INTERNATIONAL COOPERATIVE PROGRAMME ON INTEGRATED MONITORING ON AIR POLLUTION EFFECTS ON ECOSYSTEMS

Untersuchungen am Feinwurzelsystem mykotropher Waldbäume an den Standorten IT01 Ritten - IT02 Montiggl

Erhebungsjahr 1993

R. PÖDER, B. PERNFÜß, W. RIENECK, S. THURNER
Institut für Mikrobiologie – Universität Innsbruck
Untersuchungen am Feinwurzelsystem mykotropher Waldbäume im Montiggler Wald und am Ritten, Provinz Bozen

Monitoring von Ektomykorrhizen

Im Rahmen des UN ECE Projektes

INTERNATIONAL COOPERATIVE PROGRAMME ON INTEGRATED MONITORING OF AIR POLLUTION EFFECTS

Im Auftrag der:

Autonomen Provinz Bozen, in der Person des Landeshauptmannes und Landesrates für Forstwirtschaft, Dr. Luis Durnwalder.

Durchgeführt vom:

Institut für Mikrobiologie, Technikerstraße 25, 6020 Innsbruck; R. Pöder, B. Pernfuß, W. Rieneck und S. Thurner
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EINLEITUNG</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>ZIELSETZUNG</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>KURZCHARAKTERISIERUNG DER UNTERSUCHUNGSFLÄCHEN</td>
<td>5</td>
</tr>
<tr>
<td>3.1</td>
<td>Untersuchungsfläche MONTIGGL</td>
<td>5</td>
</tr>
<tr>
<td>3.2</td>
<td>Untersuchungsfläche RITTEN</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>MATERIAL UND METHODEN</td>
<td>7</td>
</tr>
<tr>
<td>4.1</td>
<td>Probenentnahme von Fein- und Feinstwurzeln</td>
<td>7</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Entnahmebereiche - Horizonte</td>
<td>7</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Lagerung des Probenmaterials und Probenaufbereitung</td>
<td>7</td>
</tr>
<tr>
<td>4.2</td>
<td>Bestimmung des Feinwurzelanteils (Biomasse)</td>
<td>8</td>
</tr>
<tr>
<td>4.3</td>
<td>Bestimmung der lebenden, mykorrhizierten Wurzelspitzen</td>
<td>8</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Anzahl von <em>Cenococcum geophilum</em></td>
<td>9</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Aktive mykorrhizierte Wurzelspitzen pro Gewichtseinheit Biomasse</td>
<td>9</td>
</tr>
<tr>
<td>4.4</td>
<td>Anzahl der lebenden nicht mykorrhizierten Wurzelspitzen</td>
<td>10</td>
</tr>
<tr>
<td>4.5</td>
<td>Mykorrhizafrequenz</td>
<td>10</td>
</tr>
<tr>
<td>4.6</td>
<td>Ektomykorrhizatypen in den Einzelproben</td>
<td>10</td>
</tr>
<tr>
<td>4.7</td>
<td>Zusammenfassung - Quantitative Untersuchungen</td>
<td>11</td>
</tr>
<tr>
<td>4.8</td>
<td>Statistische Verfahren</td>
<td>11</td>
</tr>
<tr>
<td>4.9</td>
<td>Ektomykorrhizen (EM) - Qualitative Untersuchungen</td>
<td>11</td>
</tr>
<tr>
<td>4.9.1</td>
<td>Präparations und Untersuchungstechniken</td>
<td>12</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Mantelstrukturen - Terminologie</td>
<td>13</td>
</tr>
<tr>
<td>4.10</td>
<td>Zusammenfassung - Qualitative Untersuchungen</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>ERGEBNISSE</td>
<td>14</td>
</tr>
<tr>
<td>5.1</td>
<td>Quantitative Untersuchungen</td>
<td>14</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Untersuchungsfläche MONTIGGL</td>
<td>14</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Untersuchungsfläche RITTEN</td>
<td>18</td>
</tr>
</tbody>
</table>
5.2 Qualitative Untersuchungen 23
5.2.1 Untersuchungsfläche MONTIGGL 23
5.2.2 Untersuchungsfläche RITTEN 23
Tafeln I - V 24

6 DISKUSSION 34

7 ZUSAMMENFASSUNG 36

8 LITERATUR 37

9 ANHANG 40
1 EINLEITUNG


Unter "Mykorrhiza" versteht man die symbiontische Wechselbeziehung zwischen Pflanzenwurzeln und Pilzen. Je nach Art und Intensität des Kontaktes beider Partner unterscheidet man im wesentlichen zwischen ekto- und endotrophen Mykorrhizen.


Einen weiteren entscheidenden Faktor für die Ausbildung der Mykorrhizen stellt der Mineralstoffgehalt des Bodens, insbesondere der Stickstoffgehalt, dar.


U.a. belegen aktuelle Untersuchungen in Waldschadensgebieten einen Rückgang der Ektomykorrhizen-Artenvielfalt zugunsten eines zuweilen massiven Auftretens des Ektomykorrhiza-
ZIELSETZUNG


3 KURZCHARAKTERISIERUNG DER UNTERSUCHUNGSSFLÄCHEN


Detaillierte Daten zu Lage, Geologie und Vegetation der Untersuchungsflächen können bei der Autonomen Provinz Bozen, Assessorat für Forstwirtschaft eingesehen werden.

3.1 Untersuchungsfläche MONTIGGL

Seehöhe: 543 m.
Bodentyp: Parabraunerde auf Porphyrgestein;
Der Wald ist als "Quercetum pubescentis" ("Flaumeichen - Mannaeschen - Buschwaldgebiet) anzusprechen, der oberhalb eines Fichtenwaldgürtels am Kleinen Montiggler See im Bereich einer felsdurchsetzten Kuppe liegt.

Vorherrschende Baumarten im Bereich der Probenahmepunkte: (M = Montiggl; Zahl = Baum-Nr.)

| M 10 | Pinus silvestris, Quercus pubescens |
| M 19 | Pinus silvestris, Quercus pubescens |
| M 17 | Quercus pubescens |
| M 2  | Quercus pubescens (Fraxinus ornus) |
| M 15 | Quercus pubescens (Fraxinus ornus) |
| M 13 | Pinus silvestris, Fraxinus ornus und Quercus pubescens; |
| M 9  | Pinus silvestris, Quercus pubescens und Fraxinus ornus (Ostrya carpinifolia) |
| M 4  | Quercus pubescens und Pinus silvestris; |
| M 1  | Pinus cembra, Quercus pubescens und Fraxinus ornus |
| M 16 | Quercus pubescens (Fraxinus ornus) |
3.2 Untersuchungsfläche RITTEN

Seehöhe: 1720 m.

Vorherrschende Baumarten im Bereich der Probenahmepunkte: (R = Ritten; Zahl = Baum-Nr.)

<table>
<thead>
<tr>
<th>R</th>
<th>Baumart</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td><em>Pinus cembra</em></td>
</tr>
<tr>
<td>25</td>
<td><em>Picea abies</em></td>
</tr>
<tr>
<td>12</td>
<td><em>Picea abies</em></td>
</tr>
<tr>
<td>23</td>
<td><em>Pinus cembra</em></td>
</tr>
<tr>
<td>6</td>
<td><em>Picea abies</em></td>
</tr>
<tr>
<td>7</td>
<td><em>Picea abies</em></td>
</tr>
<tr>
<td>8</td>
<td><em>Picea abies</em></td>
</tr>
<tr>
<td>2</td>
<td><em>Picea abies</em></td>
</tr>
<tr>
<td>3</td>
<td><em>Picea abies</em></td>
</tr>
<tr>
<td>4</td>
<td><em>Picea abies</em></td>
</tr>
</tbody>
</table>
4 MATERIAL UND METHODEN

4.1 Probenentnahme von Fein- und Feinstwurzeln

4.1.1 Entnahmebereich - Horizonte

Verschiedene Autoren (z.B. KERN et al. 1961; KARIZUMI 1968) konnten zeigen, daß die Horizontalverteilung der Feinst- und Feinwurzeln (Durchmesser < 1 mm bzw. 1-2 mm; im folgenden als "Feinwurzeln" zusammengefaßt) zwischen den Bäumen eines Bestandes (abgesehen vom unmittelbaren Stockbereich) weitgehend gleichmäßig ist. Dies gilt nur unter der Voraussetzung, daß Bestandesschluß und Boden einheitlich sind, ein Umstand, der bei unseren Probeflächen nur teilweise zutrif.

Die Proben wurden ungeachtet solcher Inhomogenitäten jeweils in ca. 1.5 bis 2 m Abstand eines mitherrschenden Baumes entnommen (= im "Traubenbereich").

Da die vertikale Verteilung der mykorrhizierten Feinwurzeln nicht zu unseren Untersuchungszielen gehörte, wurden bei allen Probenverbungen die Horizonte bis durchschnittlich 6-8 cm Tiefe beprobt. Diese Angaben berücksichtigen nicht die 0.5 bis 2 cm starken OL-Horizonte, welche vor dem Einsetzen des 100 ml-Stechzylinders (5.6 mal 4 cm) weitgehend entfernt wurden.

Eine detaillierte Beschreibung der Bodenprofile der Versuchsflächen stehen bei der Autonomen Provinz Bozen, Assessorat für Forstwirtschaft, zur Verfügung.


4.1.2 Lagerung des Probenmaterials und Probenaufbereitung

Die Bodenproben wurden in luftdurchlässigen Gefrierbeuteln bei 4°C (Klimakammer) bis zur Fixierung gelagert (maximal 7 Tage).


4.2 Bestimmung des Feinwurzelanteils (Biomasse)

Auf Grund der weitgehenden Inhomogenität des Baumbestandes, vor allem in den Flächen mit der "wärmelebenden" Flora des "Mannaeschen-Flaumeichen-Buschwaldgebietes", war eine exakte Differenzierung der Feinwurzeln der verschiedenen Baumarten methodisch nicht möglich. Ungeachtet dessen, daß in den jeweiligen Stichproben auch die Feinwurzeln entfernt stehender Baumarten gefunden werden können, ist die morphologische Unterscheidung der Feinwurzeln mehrerer Laubholzarten (Eiche, Kastanie, Hopfenbuche, etc.) äußerst schwierig.


Nach der Bestimmung der Anzahl lebender (aktiver) EM unter einer Stereolupe wurde das Wurzelmaterial im Trockenschrank bei 105°C bis zur Gewichtskonstanz getrocknet und gewogen.

Diese Methode entspricht nicht einer exakten Bestimmung der Biomasse, da feinste bzw. mikroskopisch kleine anorganische und organische Verunreinigungen (z.B. stark an Hyphen haftende Bodenpartikel) das Trockengewicht erhöhen. Der besonders sorgfältig durchgeführte Reinigungsprozeß sollte jedoch diesen Fehler in Grenzen, vor allem aber konstant halten.

4.3 Bestimmung der lebenden, mykorrhizierten Wurzelspitzen

Eine möglichst realitätsnahe Beurteilung des jeweiligen Status der Wurzelspitzen kann für die Kategorie "lebend - aktiv" mit größerer Sicherheit erfolgen als für die Kategorie "tot - inaktiv". Dies mag paradox erscheinen, die Praxis zeigt jedoch, daß beispielsweise tote Wurzelspitzen einen peniblen Waschvorgang selten in intakter Form überstehen. Morsche oder ausge- höhlte Spitzen zerbrechen leicht beim Hantieren (auch während des Zählvorgangs), weswegen in manchen Proben ein exaktes Quantifizieren abgestorbener Wurzelspitzen nicht möglich ist (PÖDER & PERNFUSS 1994).

Die in ähnlich strukturierte Chargen fraktionierten Wurzeln (Abschnitte von Langwurzeln, Mykorrhizasysteme an Feinst- oder Feinwurzeln) wurden stereomikroskopisch (Stereolupe WILD HEERBURG mit Zoomobjektiv; max. Vergr. x 40) untersucht. Auch bei besonders
dicht gepackten, ineinander verflochtenen "Mykorrhizaknäueln" wurden Gewichtsanteile aus-
gezählt und die jeweils tatsächliche Anzahl an Wurzelspitzen errechnet bzw. geschätzt.

Die oft schwierige Unterscheidung zwischen abgestorbenen und vitalen Wurzelspitzen wurde
nach folgenden Kriterien vorgenommen:

Stark geschrumpfte Oberfläche und verletzte Gewebestellen (= fortschreitende Zersetzung des
Pilzmantels bzw. Abbau des Wurzelgewebes).

Oberflächlich relativ gut erhaltene Wurzelspitzen mit "morscher" Gewebestruktur zer-
fallen bei geringer mechanischer Beanspruchung (Präpariernadel).

Bei einem Teil der älteren Kurzwurzeln stirbt nur der Pilzmantel und das Rindenparen-
chym ab, während der Zentralzylinder am Leben bleibt und später zu einer Langwurzel
auswächst. Derartige Kurzwurzeln konnten auf Grund der stereomikroskopischen Beob-
achtungen meist nicht zur Kategorie "lebend" gereiht werden.

Von Tieren (Wurzellaüse, Nematoden, etc.) angefressene Wurzeln.

Unter der Lupe ist bei stärkerer Vergrößerung in Aufsicht auf die Wurzelspitze oder an
Bruchstellen oft nur mehr ein ausgehöhltes Mantel-Rindenparenchym-Gerüst zu
erkennen.

4.3.1 Anzahl von Cenococcum geophilum

Die schwarzen Cenococcum-Mykorrhizen sind unter einer Lupe relativ leicht zu identifizieren
(vgl. Tafel III, Foto 9). Ihr Anteil an den gesamten, in den Einzelproben vorgefundenen, akti-
ven Mykorrhizen wurde exakt ausgezählt.

4.3.2 Aktive mykorrhizierte Wurzelspitzen pro Gewichtseinheit Biomasse

Diese Kennziffer läßt bei vergleichenden Untersuchungen eine Reihe von Aussagen zu. Hohe
Werte implizieren - insofern sie statistisch signifikant sind - z.B. eine höhere Mykorrhiza-
frequenz sowie einen höheren Verzweigungsindex. Die Relativierung "pro Gewichtseinheit"
(z.B. "EM pro Gramm Biomasse") berücksichtigt den Umstand, daß einer gleich großen An-
zahl von EM je Bodenvolumen ein sehr unterschiedlicher Fein(st)wurzelgehalt zugrunde liegen
kann.

Die Anzahl der aktiv mykorrhizierten Wurzelspitzen pro Gramm Trockensubstanz wurde aus
den vorher ermittelten Daten über die Anzahl der aktiven Mykorrhizen und das Trocken-
gewicht der Wurzelbiomasse pro 100 ml Probe errechnet.
4.4 Anzahl der lebenden nicht mykorrhizierten Wurzelspitzen

Die Anzahl der lebenden nicht mykorrhizierten Wurzelspitzen (ohne Pilzmantel und Verdickung, mit Wurzelaaren, etc.) in den Einzelproben wurde anhand von Wurzelfraktionen (ähnlich strukturierte Chargen, vgl. 4.3) exakt ausgezählt und die jeweils tatsächlichliche Anzahl errechnet bzw. geschätzt.

4.5 Mykorrhizafrequenz

Die Mykorrhizafrequenz (MF) bezieht sich auf den Prozentanteil der lebenden mykorrhizierten Wurzelspitzen an der Gesamtzahl (100%) aller lebenden Wurzelspitzen und stellt somit ein Maß für den Mykorrhizierungsgrad von Wurzelsystemen dar.

Die Mykorrhizafrequenz wurde aus den vorher ermittelten Daten über die Anzahl der aktiven Mykorrhizen und die Anzahl der aktiven nicht mykorrhizierten Wurzelspitzen pro 100 ml Einzelprobe errechnet.

4.6 Ektomykorrhizatypen in den Einzelproben


Aus diesen Daten konnte die durchschnittliche Anzahl von dominierenden Mykorrhizatypen in den einzelnen Stichproben (100 ml) ermittelt werden.
4.7 Zusammenfassung - Quantitative Untersuchungen

Bestimmung des Feinwurzelanteils (Trockensubstanz) in 100 ml Boden  
Bestimmung der lebenden mykorrhizierten Wurzelspitzen in 100 ml Boden  
Anzahl von *Cenococcum geophilum*  
Anzahl der lebenden nicht mykorrhizierten Wurzelspitzen in 100 ml Boden  
Ektomykorrhizatypen in den Einzelproben

Folgende Kennziffern wurden errechnet:

Prozentueller Anteil von aktiven *Cenococcum*-Mykorrhizen an der Gesamtzahl (100%) der aktiven mykorrhizierten Wurzelspitzen in den Einzelproben  
Aktive mykorrhizierte Wurzelspitzen pro Gewichtseinheit Biomasse (Trockensubstanz)  
Mykorrhizafrequenz (MF)

4.8 Statistische Verfahren

In jeder Untersuchungsfläche wurden im Frühjahr und Herbst (vgl. Pkt. 4.1.1) jeweils 20 Proben gezogen. Die Datenanalyse erfolgte mit den PC-Programmen "LOTUS 123" (Lotus) und "XACT" (Scilab). Errechnet wurden jeweils Mittelwert (x) ± Standardabweichung (s) und der Standardfehler des Mittelwerts. Ein Vergleich der Mittelwerte (n = 20) der jeweiligen Frühjahrs- und Herbstdaten wurde mit dem Student's t-Test vorgenommen. Signifikanzniveaus bzw. Irrtumswahrscheinlichkeiten (p) sind bei Bedarf im Text angeführt.

4.9 Ektomykorrhizen (EM) - Qualitative Untersuchungen

Die in den 100 ml Stechzylinderproben enthaltenen, bereits gewaschenen und fixierten Feinwurzeln wurden stereomikroskopisch untersucht (in Petrischalen mit Leitungswasser). Einzelne Exemplare von EM-Systemen wurden für weitere Untersuchungen entnommen (Rückführung ins Fixiermittel; Lagerung bei 4°C).

Wie schon einleitend erwähnt, können bei Untersuchungen im Freiland die morphologischen (später auch anatomischen) Befunde nur in seltenen Fällen zu einer Zuordnung der EM zu einer bestimmten Pilzart führen. Ein und derselbe Mykorrhizatyp kann z.B. je nach Alter eine stark unterschiedliche Färbung zeigen. Abziehende Hyphen oder Rhizomorphen können unterschiedlich stark ausgeprägt sein oder, je nach Entwicklungsstadium, auch gänzlich fehlen. Andererseits findet man oft eindeutige strukturelle Unterschiede (Mantelarchitektur) bei oberflächlich (Farbe, Oberflächenbeschaffenheit) sehr ähnlichen Typen.


- Farbe (Tageslichtqualität)
- Verzweigungsart
- Oberflächenbeschaffenheit (glatt, rauh, abziehende Hyphen, Rhizomorphen)
- Mantelstärke und Mantelstruktur
- Ausbildung des Hartigsknetz des Netztes
- Hyphenstrukturmerkmale (Pigmentation, Ornamentation, Schnallen, Zystiden, Setae)


4.9.1 Präparations- und Untersuchungstechniken

Längs- und Tangentialschnitte (Dünnschnitte bis ca. 15 μm Dicke) wurden mit einem REICHERT Gefriermikrotom angefertigt.

Alle lichtoptischen Untersuchungen (Hellfeld, Interferenzkontrast nach NOMARSK) wurden mit einem LEITZ DIALPLAN Forschungsmikroskop vorgenommen (halbapochromatische Objektive PL FLUOTAR 10x, 25x, 40x und 100x Öl; Okulare PERIPLAN GF 12,5x; Foto-
system LEITZ VARIO ORTHOMAT 2). Als Film wurde KODAK Ektachrome 64T verwendet.


Für Makrofotografien wurde ein PL-Objektiv (2.5x) verwendet und mit Kaltlichtquellen (Intralux 5000 - VOLPI) ausgeleuchtet (Präparate in Leitungswasser).

Alle anderen Präparate wurden in aqua dest. oder in 2%iger KOH untersucht. Spezielle Färbungen, ausgenommen die Anwendung von Baumwollblau in Milchsäure zur Kontrastierung des Pilzmantels und des Hartigen Netzes, wurden im allgemeinen nicht vorgenommen. Für eine übersichtliche Beurteilung der Gewebestrukturen erscheinen uns die o. a. Techniken als ausreichend.

4.9.2 Mantelstrukturen - Terminologie

Als Proschynchym bzw. Pletenchym wird ein (in Mantelauflistung) mehr oder weniger dichtes Geflecht aus langgestreckten Hyphen bezeichnet. Im Quer- und Längsschnitt ist eine aus Einzelhyphen bestehende Struktur noch gut zu erkennen.


Übergänge zwischen beiden Strukturtypen sind oft schwer zu erkennen.

4.10 Zusammenfassung - Qualitative Untersuchungen

Beschreibung makro- und mikroskopischer Merkmale relativ häufig auftretender bzw., charakteristischer Mykorrhizatypen unter Anwendung verschiedener licht-optischer Verfahren.

Untersuchung der Feinwurzelanatomie ausgewählter Mykorrhizasysteme.

Beobachtung flächenspezifischer Assoziationen von Mykorrhizatypen (Populationsmuster).
5 ERGEBNISSE

Eine zusammenfassende graphische Darstellung wesentlicher quantitativer und qualitativer Ergebnisse ist in den Abb. 9 - 12 auf Seite 22 dokumentiert.

5.1 Quantitative Untersuchungen

5.1.1 Untersuchungsfläche MONTIGGL


Der durchschnittliche Feinwurzelgehalt (Trockensubstanz) in den 100 ml Bodenproben beträgt 0.737 Gramm pro Probe im Frühjahr und 0.671 Gramm für jene im Herbst. Diese ca. 9%ige Abnahme ist wahrscheinlich signifikant (p ≤ 0.05).

Sowohl die durchschnittliche Anzahl der lebenden mykorrhizierten Wurzelspitzen in 100 ml Boden als auch der Mykorrhizierungsgrad der Feinwurzeln (Anzahl der lebenden mykorrhizierten Wurzelspitzen pro Gramm Trockensubstanz) sanken bis zum Herbst auf jeweils ca. 35% der Frühlingswerte. Die Werte für das Frühjahr und für den Herbst unterscheiden sich somit hochsignifikant (p ≤ 0.001).

Der Prozentanteil der lebenden Cenococcum-Mykorrhizen an der Gesamtzahl der lebenden mykorrhizierten Wurzelspitzen lag im Frühjahr und im Herbst bei ca. 30%.

Trotz der unterschiedlich deutlichen Verringerung der Biomasse und der Wurzelspitzen während Frühjahr und Herbst stieg die Mykorrhizafrühe (Prozentanteil der aktiven mykorrhizierten Wurzelspitzen an der Gesamtzahl der aktiven Wurzelspitzen in den Einzelproben) gegenläufig (nicht signifikant) von 97% auf 100% an.

Bei allen ermittelten Datensätzen (n = 20) liegt die Standardabweichung zwischen 40% und 80%. Dieser Umstand ist vor allem auf die natürliche Streuung und die Inhomogenität der Probeflächen (Bodenbeschaffenheit, mikroklimatische Verhältnisse, etc.) zurückzuführen.
Tab. 1: Zusammenfassung der Werte der am Feinwurzelsystem ermittelten Parameter für die Probenfläche MONTIGGL. Die Daten für Frühjahr (F) und Herbst (H) sind einander gegenüber gestellt. Die angegebenen Werte stellen jeweils den Mittelwert der pro markiertem Baum (M1 - M19) gezogenen 2 Stichproben dar. Die Standardabweichungen (s) beziehen sich jeweils auf die Werte aller 20 Einzelproben (Anhang, Tab. 3 - 4).

<table>
<thead>
<tr>
<th>rohe</th>
<th>Anzahl der lebenden mykorrhizierten Wurzel-</th>
<th>Anzahl der lebenden mykorrhizierten Wurzel-</th>
<th>Prozentranteil von Cenococcum an der Gesamt-</th>
<th>Mykorrhizafrequenz</th>
<th>Trockengewicht (Gramm) der mykotrophen Fein- und Feinstwurzeln in 100 ml Boden</th>
<th>Anzahl dominierender Mykorrhizatypen in 100 ml Boden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>myrzkorhrizierter Wurzel-</td>
<td>myrzkorhrizierter Wurzel-</td>
<td>Zahl der mykorrhizierten</td>
<td>Wurzel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>spitzen in 100 ml Boden</td>
<td>spitzen in 100 ml Boden</td>
<td>Wurzelspitzen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trockengewicht</td>
<td>Trockengewicht</td>
<td></td>
<td></td>
<td>Trockengewicht</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>F</td>
<td>H</td>
</tr>
<tr>
<td>M 1</td>
<td>142</td>
<td>142</td>
<td>763</td>
<td>157</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>M 2</td>
<td>1463</td>
<td>423</td>
<td>1122</td>
<td>423</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>M 4</td>
<td>680</td>
<td>232</td>
<td>918</td>
<td>349</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>M 9</td>
<td>1269</td>
<td>717</td>
<td>2104</td>
<td>989</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>M 10</td>
<td>463</td>
<td>212</td>
<td>827</td>
<td>512</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>M 13</td>
<td>1069</td>
<td>184</td>
<td>1334</td>
<td>269</td>
<td>60</td>
<td>52</td>
</tr>
<tr>
<td>M 15</td>
<td>1504</td>
<td>122</td>
<td>2280</td>
<td>230</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>M 16</td>
<td>368</td>
<td>225</td>
<td>589</td>
<td>340</td>
<td>37</td>
<td>48</td>
</tr>
<tr>
<td>M 17</td>
<td>906</td>
<td>612</td>
<td>1942</td>
<td>850</td>
<td>51</td>
<td>29</td>
</tr>
<tr>
<td>M 19</td>
<td>725</td>
<td>163</td>
<td>1115</td>
<td>417</td>
<td>41</td>
<td>54</td>
</tr>
<tr>
<td>( \bar{x} )</td>
<td>859</td>
<td>307</td>
<td>1299</td>
<td>477</td>
<td>28</td>
<td>31</td>
</tr>
<tr>
<td>s (n=20)</td>
<td>520</td>
<td>256</td>
<td>765</td>
<td>300</td>
<td>20</td>
<td>17</td>
</tr>
</tbody>
</table>
Abb. 1: Anzahl der lebenden Ektomykorrhizen pro 100 ml Boden - Probefläche "Montiggl" (Abweichungsbalken entspricht Standardfehler)

Abb. 2: Anzahl der lebenden Ektomykorrhizen pro 100 g Trockensubstanz - Probefläche "Montiggl" (Abweichungsbalken entspricht Standardfehler)
Abb. 3: Prozentueller Anteil der aktiven Cenococcum geophilum - EM an den aktiven mykorhizierten Wurzelspitzen - Probenfläche "Montiggl" (Abweichungsbalken entspricht Standardfehler)

Abb. 4: Biomasse mykotrophen Feinwurzeln [Gramm Trockensubstanz pro 100 ml Boden] - Probenfläche "Montiggl" (Abweichungsbalken entspricht Standardfehler)
5.1.2 Untersuchungsfläche RITTEN

Die gemessenen bzw. errechneten Werte sind in Tabelle 2 und den Abbildungen 5 - 8 dargestellt. Alle ermittelten Einzelwerte können den Tabellen im Anhang entnommen werden.

Die durchschnittliche Trockensubstanz der mykotrophen Feinst- und Feinwurzeln in 100 ml Boden (Feinwurzelgehalt) betrug im Frühjahr 0.833 Gramm und im Herbst 0.713 Gramm. Die beiden Mittelwerte sind jedoch nicht signifikant verschieden (p > 0.05).

Die Anzahl der lebenden mykorrhizierten Wurzelspitzen in 100 ml Boden sank von durchschnittlich 1097 um ca. 50% auf 516 gezählte Spitzen. Die Abnahme ist damit ebenso signifikant (p > 0.01) wie in der Untersuchungsfläche Montiggl.

Ebenso nahm der Mykorrhizabesatz, welcher sich aus den beiden oben erwähnten Parametern errechnet, von 1276 aktiven mykorrhizierten Wurzelspitzen pro Gramm Feinwurzelgehalt um ca. 40% auf 774 ab. Der für die Probennahme im Herbst errechnete Mittelwert unterscheidet sich signifikant (p ≤ 0.01) von jenem, für das Frühjahr ermittelten Wert.

Im Gegensatz zur Versuchsfläche Montiggl konnte hier eine wahrscheinlich signifikante Verringerung (p ≤ 0.05) der aktiven *Cenococcum*-Mykorrhizen im Verhältnis zu den gesamten aktiven mykorrhizierten Wurzelspitzen von 31% auf 12% verzeichnet werden.

Betreffend die Mykorrhizafrequenz konnten mit 97% im Frühjahr und 99% im Herbst keine großen Veränderungen ermittelt werden.
Die Tabelle 2 zeigt die Zusammenfassung der Werte der am Feinwurzelssystem ermittelten Parameter für die Probenflächen. Die Daten für Frühjahr (F) und Herbst (H) sind in eine Tabelle gestellt. Die angegebenen Werte stellen jeweils den Mittelwert der pro markierten Baum (R2 - R29) gezogenen 2 Stichproben dar. Die Standardabweichungen (s) beziehen sich jeweils auf die Werte aller 20 Einzelproben (Anhang, Tab. 5 - 6).

<table>
<thead>
<tr>
<th>rohe mykorrh. Wurzel-</th>
<th>Anzahl der lebenden</th>
<th>Prozenteil von</th>
<th>Mykorrhizaquellen</th>
<th>Trockengewicht (Gramm)</th>
<th>Anzahl</th>
<th>dominierender Mykorrhizatypen</th>
</tr>
</thead>
<tbody>
<tr>
<td>spitzen in 100 ml Boden</td>
<td>mykorrh. Wurzelspitzen / Gramm</td>
<td>Cenococcum an der Gesamtzahl der mykorrh. Wurzelspitzen</td>
<td>Fein- und Feinstwurzeln in 100 ml Boden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>F</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>R 2</td>
<td>591</td>
<td>203</td>
<td>1079</td>
<td>419</td>
<td>59</td>
<td>5</td>
</tr>
<tr>
<td>R 3</td>
<td>978</td>
<td>375</td>
<td>962</td>
<td>849</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>R 4</td>
<td>1108</td>
<td>835</td>
<td>1559</td>
<td>952</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>R 5</td>
<td>863</td>
<td>715</td>
<td>997</td>
<td>1171</td>
<td>31</td>
<td>10</td>
</tr>
<tr>
<td>R 6</td>
<td>1334</td>
<td>330</td>
<td>1615</td>
<td>469</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>R 7</td>
<td>1032</td>
<td>802</td>
<td>1396</td>
<td>1120</td>
<td>23</td>
<td>8</td>
</tr>
<tr>
<td>R 8</td>
<td>1197</td>
<td>724</td>
<td>1389</td>
<td>1189</td>
<td>29</td>
<td>9</td>
</tr>
<tr>
<td>R 12</td>
<td>1947</td>
<td>452</td>
<td>1365</td>
<td>787</td>
<td>83</td>
<td>22</td>
</tr>
<tr>
<td>R 24</td>
<td>732</td>
<td>343</td>
<td>1025</td>
<td>358</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>R 29</td>
<td>1192</td>
<td>379</td>
<td>1370</td>
<td>427</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>x</td>
<td>1097</td>
<td>516</td>
<td>1276</td>
<td>774</td>
<td>31</td>
<td>12</td>
</tr>
<tr>
<td>s (n=20)</td>
<td>701</td>
<td>384</td>
<td>500</td>
<td>59</td>
<td>39</td>
<td>9</td>
</tr>
</tbody>
</table>
Abb. 5: Anzahl der lebenden Ektomykorrhizen pro 100 ml Boden - Probefläche "Ritten" (Abweichungsbalken entspricht Standardfehler)

Abb. 6: Anzahl der lebenden Ektomykorrhizen pro 100 g Trockensubstanz - Probefläche "Ritten" (Abweichungsbalken entspricht Standardfehler)
Abb. 7: Prozentueller Anteil der aktiven Cenococcum geophilum - EM an den aktiven mykorrhizierten Wurzelpitzen - Probenfläche "Rotten" (Abweichungsbalken entspricht Standardfehler)

Abb. 8: Biomasse mykotropher Feinwurzeln [Gramm Trockensubstanz pro 100 ml Boden] - Probenfläche "Rotten" (Abweichungsbalken entspricht Standardfehler)
Abb. 9-12: Mykorrhizierungsgrad, Frequenz von Cenococcum graniforme und Ekтомykorrhizen-Typenvielfalt in den vier Untersuchungsflächen (Abweichungsbalken = Standardfehler)
5.2 Qualitative Untersuchungen

5.2.1 Untersuchungsfläche MONTIGGL

In den einzelnen 100 ml Bodenproben konnten durchschnittlich 4 (im Frühjahr) bzw. 3 (im Herbst) dominierende EM-Typen festgestellt werden. Das heißt, daß in den einzelnen Stichproben die jeweilige Mykorrhizafrequenz zu über 90% durch nur 3 bis 4 unterschiedliche EM-Typen erzielt wurde (vgl. Tab. 1), wobei jeweils einer dieser EM-Typen als *Cenococcum geophilum* identifiziert werden konnte (vgl. 30% *Cenococcum-EM*; Pkt. 5.1.1). Insgesamt konnten in der Untersuchungsfläche jedoch 19 unterschiedliche Typen registriert werden, von denen 8 Typen relativ häufig gefunden wurden (vgl. Taf. I - IV).

5.2.2 Untersuchungsfläche RITTEN

TAFEL I

Foto 1 - 2:

Typ 1.- Nicht identifizierte (*Russula spp.*) "creme- bis blaßgelbliche, glatte EM-Form". Die Abbildungen zeigen unterschiedliche Wuchsformen dieses Typs, der vorwiegend in Montiggl und Pomarolo gefunden wurde. Auf *Pinus silvestris* sind die Mykorrhizen typisch dichotom verzweigt (= "Gabelmykorrhizen"); *(MS = 1 mm bzw. 0.5 mm).*

Foto 3:

Typ 1.- Längsschnitt (Färbung: Baumwollblau). Der Bildausschnitt zeigt einen mehr oder weniger pseudoparenchymatisch strukturierten Pilzmantel (M) und einige Rindenparenchymzellen (RP). Das Hartigische Netz war in diesem Präparat schwach entwickelt, ist jedoch auf einer Zelle des RP (Pfeil) in Aufsicht abgebildet *(MS = 10 μm).*

Foto 4:

TAFEL II

Foto 5:

Typ 4.- Nicht identifizierte "feinfilzige, amethystfarbene Form". Die typische, aber meist zart ausgeprägte Amethystfärbung ist sehr vergänglich und kommt in der Abbildung kaum zum Ausdruck (vgl. Wurzelspitze links im Bild). Mantel- und Hyphenstrukturen ähneln einem von Laccaria amethystina (Bolt.) Murr. gebildeten EM-Typ (vgl. AGERER 1987 - 1991). Die Art kommt in Nadel- und Laubwald vor und war am Ritten relativ häufig nachzuweisen (MS = 0.5 mm).

Foto 6 - 7:

Typ 5.- Nicht identifizierte "ockerbräunliche Form mit stark entwickeltem weißen bis gelblichen Hyphenschleier und Rhizomorphen". Die Art war in allen Probenflächen häufig und ist bezüglich ihrer farblichen Nuancierung sehr variabel (hellockerbräunlich bis ockerbraun, z.T. mit zart rosa Stich, etc.). Eine Differenzierung der verschiedenen Formen in mehrere Arten war uns auch aufgrund anatomischer Untersuchungen nicht möglich (MS = 0.5).

Foto 8:

Typ 6.- Nicht identifizierte "schmutzig ockerliche, glatte, schwärzende Form". Farbe und Oberflächenbeschaffenheit unterscheiden diesen Typ nicht von zahlreichen weiteren EM-Typen. Als Besonderheit kann jedoch die auffallende blauschwärzliche Verfärbung verletzter Mantelstellen gelten (MS = 0.5 mm).
TAFEL III

Foto 9 - 13:

Foto 9:
Typisch dichotom verzweigtes EM-System an Pinus silvestris (monopodial an Picea). Die abziehenden Hyphen sind verzweigt, relativ dickwandig (Wand ca. 1 μm), glatt und tragen Schnallen an den Hyphensepten. Sie entspringen aus blasigen Zellen der Manteloberfläche. Anhand dieser charakteristischen Hyphen ist die Art leicht von den ebenfalls schwarzen Cenococcum-Mykorrhizen zu unterscheiden (MS = 0.5 mm).

Foto 10 - 11:
Abb. 10 zeigt die Manteloberfläche (Aufsicht; Mantelpräparat) des aus kugeligen bis breit elipsoidischen Zellen (Durchmesser bis ca. 35 μm) bestehenden synenchymatischen Mantels (Durchlicht, Hellfeld). Gegenübergestellt (Abb. 11) ist die Mantelinnenansicht (MS = 50 μm).

Foto 12:
Längsschnitt im Bereich des Zentralzylinders. Das Hartigsche Netz ist gut entwickelt und reicht - wie für Nadelbaummykorrhizen typisch - mehrere Zellagen tief bzw. bis zum Zentralzylinder (MS = 100 μm).

Foto 13:
Mantelausschnitt (Längsschnitt). Deutlich erkennbar ist das Hartigsche Netz (Pfeile) zwischen und auf den Parenchymzellen. Die Zellen in der Bildmitte erscheinen aufgrund von Gerbstoffeinzahlungen ockergelb ("Tanninzellen" unterhalb des Pilzmantels); (MS = 10 μm).
**Foto 14 - 17:**

Typ 8.- Nicht identifizierte "orange, glatte Form". Dieser lebhaft orange-gelb gefärbte Typ war am Ritten relativ häufig (ebenso in Lavazé und sporadisch in Pomarolo). Morphologisch-anatomisch ähnelt die Art Typen, die von Vertretern der Russulales gebildet werden, z.B. *Lactarius*-Mykorrhizen; es konnten jedoch keine milchführenden Hyphen (Lactiferen) im Pilzmantel nachgewiesen werden.

**Foto 14:**

Mykorrhizierte Wurzelspitze (*Picea abies*) im Längsschnitt (Zentralzylinderbereich). Gut zu erkennen sind die Tanninzellen unterhalb des Pilzmantels. Das Hartigische Netz ist gut entwickelt und reicht bis zum Zentralzylinder. In der Bildmitte sind typisch strukturierte Elemente des Xylem angeschnitten (MS = 100 μm).

**Foto 15:**

Irregulär monopodial verzweigtes EM-System (MS = 1 mm).

**Foto 16:**

Mantelausschnitt (Längsschnitt; Färbung: Baumwollblau). Die Mantelstruktur ist als mehr oder weniger synenchymatisch anzusprechen. Die im Schnitt vorwiegend elliptischen, seltener hyphigen Zellen sind bezüglich ihrer Größe ziemlich variabel und scheinen in eine amorphe Matrix eingebettet zu sein. In einer vom Hartigschen Netz (Pfeil) umsäumten Parenchymzelle ist ein für Fichtenwurzeln typischer, großer, runder Zellkern (K) zu erkennen (MS = 10 μm).

**Foto 17:**

Mantelstrukturen (M) und Tanninzellen (T) im Längsschnitt (Färbung: Baumwollblau). Das Hartigische Netz ist durch einen Pfeil markiert (MS = 10 μm).
TAFEL V

Foto 18 - 21:

Nicht mykorrhizierte Wurzelspitzen von Quercus pubescens im Längsschnitt (Färbung: Baumwollblau).

Foto 18:

Die Schnittebene liegt oberhalb des Zentralzylinders; dadurch ist das Spitzenmeristem nicht abgebildet und die im Bild rechts gelegene Spitze erscheint unvollständig (Schnittartefakt). Trotzdem wird deutlich, daß die Feinwurzel bis an ihre Spitze mit Wurzelhaaren besetzt ist. Die Vitalität der Wurzelspitze wird auch durch die reichlich vorhandenen Speicherstoffe (Agglomerate feinkörniger Strukturen in den Parenchymzellen; Pfeil) deutlich (MS = 100 μm).

Foto 19:

Insbesondere in den Herbst-Proben konnten zahlreiche Wurzelspitzen mit Trockenschäden beobachtet werden. Inwieweit solche Wurzelspitzen gänzlich absterben, ist im Einzelfall nur schwer zu beurteilen. Die Spitze der abgebildeten Feinwurzel ist auf einer Länge von nur 0.2 mm stark in Mitleidenschaft gezogen (verdorrt). Im dahinter liegenden Bereich erscheinen die Parenchymzellen jedoch äußerst vital (MS = 100 μm).

Foto 20 - 21:

Anhand stichprobenartiger Untersuchungen an unmykorrhizierten, vital erscheinenden Wurzel- spitzen konnten mehrfach Infektionen durch eine nicht identifizierte Pilzart festgestellt werden. Die wenig massiven Infektionen betrafen vorwiegend die Wurzelhaare (Abb. 21; der Pfeil markiert ein Hyphenseptum) und Zellen der Wurzelepidermis. In Abb. 20 ist eine intrazelluläre Hyphe, welche die Zellwand zwischen zwei Epidermiszellen durchdringt, dargestellt (Pfeil). Nach dem Durchdringen der Zellwand - der Penetrationskanal ist nur ca. 1.5 μm breit - erweitert sich die Hyphe knopfartig (MS = 10 μm).

Aufgrund inhomogener Randbedingungen (Bodenbeschaffenheit, Mikroklima, unterschiedliche Baumarten, etc.) ist bei derartigen Untersuchungen im allgemeinen mit relativ hohen Standardabweichungen zu rechnen (vgl. PÖDER et al. 1993). Dies war auch bei den vorliegenden Untersuchungen der Fall. Weiterführende statistische Analysen (z.B. Varianzanalysen, Vertrauensgrenzen von Populationsmittelwerten, etc.) waren im Rahmen unseres Auftrages nicht durchzuführen. Entsprechende Analysen können bzw. sollten zur Absicherung der bisherigen Ergebnisse noch ausgeführt werden.

Für eine qualitative Auswertung standen, unter Berücksichtigung der händisch gezogenen Parallelproben, jeweils bis zu 80 Proben pro Untersuchungsfläche zur Verfügung. Dieser relativ hohe Stichprobenumfang sollte eine gute "Abschätzung" der jeweiligen EM-Typenvielfalt erlauben: Eine exakte Erfassung aller tatsächlich vorkommenden EM-Typen sowie deren exakte Quantifizierung ist, zumindest derzeit, aus methodischen Gründen undurchführbar. Selbst neue Konzepte auf der Basis molekularbiologischer Verfahren werden erst innerhalb der nächsten Jahre ihre Anwendbarkeit bezüglich der oben erwähnten Zielvorstellungen unter Beweis stellen müssen. Zur Zeit, so scheint es, steht uns nur ein klassisches Methodenarsenal zur Ver-
fügung, dessen sinnvoller Einsatz vor allem durch die jeweilige Erfahrung und Beobachtungsgabe der EM-Forscher/innen bestimmt wird.

7 ZUSAMMENFASSUNG

Im Rahmen des "International Cooperative Programme on Integrated Monitoring of Air Pollution Effects (UN ECE)" wurden auch Untersuchungen (Ekтомykorrhiza-Monitoring) am Feinwurzelsystem mykotropher Waldbäume im Montiggler Wald (Quercetum pubescentis) und am Ritten (Piceetum subalpinum) durchgeführt. In jeder Untersuchungsfläche wurden jeweils im Frühjahr und im Herbst 1993 zwanzig 100 ml Bodenproben im Traufenbereich markierter Bäume aus den obersten Bodenhorizonten (ohne O_L-Horizont) gezogen und im wesentlichen folgende Parameter bestimmt:

- Biomasse (TG) mykotropher Feinwurzeln in 100 ml Boden
- Anzahl der lebenden bzw. aktiven Ekтомykorrhizen (= mykorrhizierte Wurzelspitzen) in 100 ml Boden (vgl. Bestimmung des "Mykorrhizierungsgrades" pro Gramm Biomasse)
- Anzahl aktiver, nicht mykorrhizierter Wurzelspitzen pro 100 ml Boden (vgl. Bestimmung der Mykorrhizafrequenz)
- Anzahl der aktiven Ce necoctum-Mykorrhizen in 100 ml Boden (vgl. prozentueller Anteil von C. geophilum an der Gesamtanzahl aller mykorrhizierten Wurzelspitzen)
- Abschätzung der EM-Typenvielfalt pro Untersuchungsfläche

Ziel der Untersuchung war die Ermittlung eines "Istzustandes", welcher die Grundlage für zukünftige, vergleichende Untersuchungen bilden sollte.


Die Ergebnisse zeigen, daß sich die Verhältnisse am Feinwurzelsystem bereits innerhalb weniger Monate gravierend verändern können. Als mögliche Ursache wird der Einfluß ungünstiger Klimaverhältnisse (Trockenstreu) diskutiert.


<table>
<thead>
<tr>
<th>rohe</th>
<th>Anzahl der lebenden mykorrhizierten Wurzelspitzen in 100 ml Boden</th>
<th>Anzahl der lebenden mykorrhizierten Wurzelspitzen / Gramm</th>
<th>Prozentanteil von <em>Cenococcum</em> an der Gesamtzahl der mykorrhizierten Wurzelspitzen</th>
<th>Trockengewicht (Gramm) der mykotrophen Fein- und Feinstwurzeln in 100 ml Boden</th>
<th>Anzahl dominierender Mykorrhizatypen in 100 ml Boden</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>198</td>
<td>1404</td>
<td>4</td>
<td>100</td>
<td>0.141</td>
</tr>
<tr>
<td>M2</td>
<td>86</td>
<td>121</td>
<td>13</td>
<td>100</td>
<td>0.712</td>
</tr>
<tr>
<td>M4</td>
<td>1795</td>
<td>1490</td>
<td>9</td>
<td>100</td>
<td>1.205</td>
</tr>
<tr>
<td>M9</td>
<td>1130</td>
<td>755</td>
<td>32</td>
<td>97</td>
<td>1.498</td>
</tr>
<tr>
<td>M10</td>
<td>229</td>
<td>358</td>
<td>15</td>
<td>100</td>
<td>0.765</td>
</tr>
<tr>
<td>M13</td>
<td>1293</td>
<td>2555</td>
<td>18</td>
<td>90</td>
<td>0.640</td>
</tr>
<tr>
<td>M15</td>
<td>1246</td>
<td>1652</td>
<td>19</td>
<td>90</td>
<td>0.506</td>
</tr>
<tr>
<td>M16</td>
<td>794</td>
<td>1496</td>
<td>13</td>
<td>100</td>
<td>0.531</td>
</tr>
<tr>
<td>M17</td>
<td>132</td>
<td>159</td>
<td>10</td>
<td>89</td>
<td>0.828</td>
</tr>
<tr>
<td>M18</td>
<td>1347</td>
<td>1767</td>
<td>45</td>
<td>100</td>
<td>0.762</td>
</tr>
<tr>
<td>M15</td>
<td>792</td>
<td>900</td>
<td>75</td>
<td>89</td>
<td>0.880</td>
</tr>
<tr>
<td>M16</td>
<td>1572</td>
<td>2404</td>
<td>8</td>
<td>99</td>
<td>0.654</td>
</tr>
<tr>
<td>M17</td>
<td>1436</td>
<td>2156</td>
<td>4</td>
<td>100</td>
<td>0.666</td>
</tr>
<tr>
<td>M18</td>
<td>536</td>
<td>1005</td>
<td>25</td>
<td>99</td>
<td>0.533</td>
</tr>
<tr>
<td>M17</td>
<td>199</td>
<td>172</td>
<td>50</td>
<td>90</td>
<td>1.157</td>
</tr>
<tr>
<td>M18</td>
<td>921</td>
<td>2006</td>
<td>58</td>
<td>97</td>
<td>0.459</td>
</tr>
<tr>
<td>M19</td>
<td>890</td>
<td>1878</td>
<td>43</td>
<td>100</td>
<td>0.474</td>
</tr>
<tr>
<td>M19</td>
<td>266</td>
<td>272</td>
<td>46</td>
<td>99</td>
<td>0.977</td>
</tr>
<tr>
<td>M19</td>
<td>1184</td>
<td>1957</td>
<td>36</td>
<td>96</td>
<td>0.605</td>
</tr>
</tbody>
</table>

\[ \bar{x} = 859 \quad s = 520 \]

\[ \bar{x} = 1299 \quad s = 765 \]

\[ \bar{x} = 97 \quad s = 4 \]

\[ \bar{x} = 0.737 \quad s = 0.295 \]
<table>
<thead>
<tr>
<th>robe</th>
<th>Anzahl lebender mykorrhizierter Wurzelspitzen in 100 ml Boden</th>
<th>Anzahl lebender mykorrhizierter Wurzelspitzen / Gramm</th>
<th>Prozentanteil von <em>Cenococcum</em> an der Gesamtzahl der mykorrhizierten Wurzelspitzen</th>
<th>Mykorrhizafrequenz</th>
<th>Trockengewicht (Gramm) der mykotrophen Fein- und Feinstwurzeln in 100 ml Boden</th>
<th>Anzahl dominierender Mykorrhizatypen in 100 ml Boden</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 1</td>
<td>100</td>
<td>149</td>
<td>33</td>
<td>95</td>
<td>0.673</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>183</td>
<td>166</td>
<td>7</td>
<td>100</td>
<td>1.102</td>
<td>4</td>
</tr>
<tr>
<td>M 2</td>
<td>531</td>
<td>410</td>
<td>33</td>
<td>100</td>
<td>1.296</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>390</td>
<td>436</td>
<td>18</td>
<td>100</td>
<td>0.895</td>
<td>4</td>
</tr>
<tr>
<td>M 4</td>
<td>206</td>
<td>236</td>
<td>35</td>
<td>100</td>
<td>0.875</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>353</td>
<td>1143</td>
<td>19</td>
<td>100</td>
<td>0.309</td>
<td>3</td>
</tr>
<tr>
<td>M 9</td>
<td>1138</td>
<td>1396</td>
<td>0</td>
<td>99</td>
<td>0.815</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>295</td>
<td>581</td>
<td>10</td>
<td>100</td>
<td>0.508</td>
<td>5</td>
</tr>
<tr>
<td>M 10</td>
<td>187</td>
<td>375</td>
<td>6</td>
<td>100</td>
<td>0.500</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>236</td>
<td>649</td>
<td>35</td>
<td>100</td>
<td>0.364</td>
<td>2</td>
</tr>
<tr>
<td>M 13</td>
<td>183</td>
<td>537</td>
<td>58</td>
<td>100</td>
<td>0.341</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>2</td>
<td>47</td>
<td>100</td>
<td>0.395</td>
<td>3</td>
</tr>
<tr>
<td>M 15</td>
<td>154</td>
<td>269</td>
<td>25</td>
<td>100</td>
<td>0.572</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>91</td>
<td>190</td>
<td>21</td>
<td>100</td>
<td>0.479</td>
<td>2</td>
</tr>
<tr>
<td>M 16</td>
<td>202</td>
<td>251</td>
<td>53</td>
<td>100</td>
<td>0.803</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>248</td>
<td>428</td>
<td>43</td>
<td>100</td>
<td>0.580</td>
<td>3</td>
</tr>
<tr>
<td>M 17</td>
<td>870</td>
<td>556</td>
<td>39</td>
<td>100</td>
<td>1.565</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>258</td>
<td>463</td>
<td>20</td>
<td>100</td>
<td>0.556</td>
<td>4</td>
</tr>
<tr>
<td>M 19</td>
<td>190</td>
<td>395</td>
<td>59</td>
<td>99</td>
<td>0.480</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>136</td>
<td>439</td>
<td>49</td>
<td>100</td>
<td>0.310</td>
<td>3</td>
</tr>
</tbody>
</table>

\[ \bar{x} = 307, \ s = 256 \]
Tab. 5: RITTEN (Frühjahr) - Zusammenfassung der Einzelwerte

<table>
<thead>
<tr>
<th>Probenummer</th>
<th>Anzahl der lebenden mykorrhizierten Wurzelspitzen in 100 ml Boden</th>
<th>Anzahl der lebenden mykorrhizierten Wurzelspitzen / Gramm</th>
<th>Prozentanteil von <em>Cenococcum</em> an der Gesamtzahl der mykorrhizierten Wurzelspitzen</th>
<th>Mykorrhiza frequenz</th>
<th>Trockengewicht (Gramm) der mykotrophen Fein- und Feinstwurzeln in 100 ml Boden</th>
<th>Anzahl dominierender Mykorrhizatypen in 100 ml Boden</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>475</td>
<td>1156</td>
<td>2</td>
<td>95</td>
<td>0.411</td>
<td>4</td>
</tr>
<tr>
<td>R3</td>
<td>708</td>
<td>1002</td>
<td>115</td>
<td>97</td>
<td>0.706</td>
<td>3</td>
</tr>
<tr>
<td>R4</td>
<td>890</td>
<td>994</td>
<td>0</td>
<td>99</td>
<td>0.895</td>
<td>5</td>
</tr>
<tr>
<td>R6</td>
<td>1066</td>
<td>930</td>
<td>46</td>
<td>100</td>
<td>1.146</td>
<td>4</td>
</tr>
<tr>
<td>R4</td>
<td>1025</td>
<td>1126</td>
<td>35</td>
<td>99</td>
<td>0.910</td>
<td>3</td>
</tr>
<tr>
<td>R6</td>
<td>1191</td>
<td>1992</td>
<td>16</td>
<td>100</td>
<td>0.598</td>
<td>5</td>
</tr>
<tr>
<td>R6</td>
<td>1257</td>
<td>1104</td>
<td>1</td>
<td>76</td>
<td>1.139</td>
<td>5</td>
</tr>
<tr>
<td>R7</td>
<td>1411</td>
<td>2125</td>
<td>0</td>
<td>99</td>
<td>0.664</td>
<td>3</td>
</tr>
<tr>
<td>R8</td>
<td>794</td>
<td>1686</td>
<td>25</td>
<td>99</td>
<td>0.471</td>
<td>4</td>
</tr>
<tr>
<td>R8</td>
<td>1270</td>
<td>1106</td>
<td>21</td>
<td>98</td>
<td>1.148</td>
<td>4</td>
</tr>
<tr>
<td>R8</td>
<td>1008</td>
<td>1428</td>
<td>28</td>
<td>100</td>
<td>0.706</td>
<td>4</td>
</tr>
<tr>
<td>R8</td>
<td>1385</td>
<td>1350</td>
<td>30</td>
<td>97</td>
<td>1.026</td>
<td>5</td>
</tr>
<tr>
<td>R12</td>
<td>3676</td>
<td>2356</td>
<td>12</td>
<td>98</td>
<td>1.560</td>
<td>2</td>
</tr>
<tr>
<td>R12</td>
<td>218</td>
<td>373</td>
<td>154</td>
<td>99</td>
<td>0.584</td>
<td>3</td>
</tr>
<tr>
<td>R24</td>
<td>346</td>
<td>705</td>
<td>2</td>
<td>100</td>
<td>0.491</td>
<td>3</td>
</tr>
<tr>
<td>R24</td>
<td>1118</td>
<td>1346</td>
<td>16</td>
<td>98</td>
<td>0.831</td>
<td>5</td>
</tr>
<tr>
<td>R25</td>
<td>1406</td>
<td>1570</td>
<td>2</td>
<td>99</td>
<td>0.896</td>
<td>4</td>
</tr>
<tr>
<td>R25</td>
<td>319</td>
<td>424</td>
<td>60</td>
<td>100</td>
<td>0.753</td>
<td>3</td>
</tr>
<tr>
<td>R29</td>
<td>1507</td>
<td>1196</td>
<td>42</td>
<td>97</td>
<td>1.260</td>
<td>4</td>
</tr>
<tr>
<td>R29</td>
<td>877</td>
<td>1544</td>
<td>11</td>
<td>100</td>
<td>0.568</td>
<td>4</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>1097</td>
<td>1276</td>
<td>31</td>
<td>97</td>
<td>0.838</td>
<td>4</td>
</tr>
<tr>
<td>s</td>
<td>701</td>
<td>500</td>
<td>39</td>
<td>5</td>
<td>0.294</td>
<td>1</td>
</tr>
</tbody>
</table>
Tabelle 6: RITTEN (Herbst) - Zusammenfassung der Einzelwerte

<table>
<thead>
<tr>
<th>robe</th>
<th>Anzahl der lebenden mykorrhizierten Wurzel spitzen in 100 ml Boden</th>
<th>Anzahl der lebenden mykorrhizierten Wurzel spitzen / Gramm</th>
<th>Prozentanteil von <em>Cenococcum</em> an der Gesamtzahl der mykorrhizierten Wurzel spitzen</th>
<th>Trockengewicht (Gramm) der mykotrophen Fein- und Feinstwurzeln in 100 ml Boden</th>
<th>Anzahl dominierender Mykorrhizatypen in 100 ml Boden</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 2</td>
<td>66</td>
<td>316</td>
<td>11</td>
<td>100</td>
<td>0.209</td>
</tr>
<tr>
<td></td>
<td>340</td>
<td>521</td>
<td>0</td>
<td>100</td>
<td>0.652</td>
</tr>
<tr>
<td>R 3</td>
<td>138</td>
<td>346</td>
<td>28</td>
<td>97</td>
<td>0.399</td>
</tr>
<tr>
<td></td>
<td>612</td>
<td>1351</td>
<td>26</td>
<td>100</td>
<td>0.453</td>
</tr>
<tr>
<td>R 4</td>
<td>128</td>
<td>261</td>
<td>30</td>
<td>100</td>
<td>0.491</td>
</tr>
<tr>
<td></td>
<td>1542</td>
<td>1644</td>
<td>9</td>
<td>100</td>
<td>0.938</td>
</tr>
<tr>
<td>R 6</td>
<td>366</td>
<td>377</td>
<td>1</td>
<td>100</td>
<td>0.971</td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>561</td>
<td>9</td>
<td>98</td>
<td>0.522</td>
</tr>
<tr>
<td>R 7</td>
<td>475</td>
<td>404</td>
<td>1</td>
<td>100</td>
<td>1.177</td>
</tr>
<tr>
<td></td>
<td>1129</td>
<td>1836</td>
<td>14</td>
<td>99</td>
<td>0.615</td>
</tr>
<tr>
<td>R 8</td>
<td>1192</td>
<td>2079</td>
<td>9</td>
<td>100</td>
<td>0.573</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td>298</td>
<td>9</td>
<td>100</td>
<td>0.857</td>
</tr>
<tr>
<td>R 12</td>
<td>693</td>
<td>854</td>
<td>28</td>
<td>100</td>
<td>0.812</td>
</tr>
<tr>
<td></td>
<td>211</td>
<td>720</td>
<td>16</td>
<td>100</td>
<td>0.293</td>
</tr>
<tr>
<td>R 24</td>
<td>343</td>
<td>276</td>
<td>0</td>
<td>99</td>
<td>1.246</td>
</tr>
<tr>
<td></td>
<td>342</td>
<td>441</td>
<td>17</td>
<td>99</td>
<td>0.776</td>
</tr>
<tr>
<td>R 25</td>
<td>565</td>
<td>557</td>
<td>11</td>
<td>100</td>
<td>1.014</td>
</tr>
<tr>
<td></td>
<td>866</td>
<td>1785</td>
<td>9</td>
<td>99</td>
<td>0.485</td>
</tr>
<tr>
<td>R 29</td>
<td>238</td>
<td>263</td>
<td>8</td>
<td>100</td>
<td>0.905</td>
</tr>
<tr>
<td></td>
<td>520</td>
<td>590</td>
<td>12</td>
<td>100</td>
<td>0.881</td>
</tr>
<tr>
<td>$\bar{c}$</td>
<td>516</td>
<td>774</td>
<td>12</td>
<td>99</td>
<td>0.713</td>
</tr>
<tr>
<td>$\bar{s}$</td>
<td>384</td>
<td>589</td>
<td>9</td>
<td>1</td>
<td>0.281</td>
</tr>
</tbody>
</table>