
UN-ECE CONVENTION ON LONG-RANGE TRANSBOUNDARY OF AIR POLLUTION

INTERNATIONAL COOPERATIVE PROGRAMME ON INTEGRATED MONITORING ON AIR POLLUTION EFFECTS ON ECOSYSTEMS

Bodenmikrobiologische Untersuchungen an den Waldstandorten IT01 Ritten - IT02 Montiggl - IT03 Lavazè - IT04 Pomarolo

Bodenmikrobiologie - Bodenenzymatik Erhebungsjahr 2000

Univ. Prof. Dr. F. SCHINNER - Univ.-Prof. Dr. R. MARGESIN Institut für Mikrobiologie – Universität Innsbruck

Endbericht

BODENMIKROBIOLOGISCHE UNTERSUCHUNGEN IM RAHMEN DES PROJEKTES "INTERNATIONAL COOPERATIVE PROGRAMME ON ASSESSMENT AND INTEGRATED MONITORING OF AIR POLLUTION EFFECTS ON FORESTS (ICP-IM)"

MB Subprogramme
Bodenmikrobiologie, Bodenenzymatik

Im Auftrag der Autonomen Provinz Bozen Abteilung Forstwirtschaft

Projektleitung

Univ.-Prof. Dr. Franz Schinner c/o Institut für Mikrobiologie (N.F.) Universität Innsbruck

<u>Wissenschaftliche Bearbeitung</u> ao. Univ.-Prof. Dr. Rosa Margesin

Technische Bearbeitung
Petra Thurnbichler

März 2001

INHALTSVERZEICHNIS

1	Einleitung	1
2	Material und Methoden	1
2.1	Versuchsflächen	1
2.2	Probenahme und Probenvorbereitung	1
2.3	Bodenmikrobiologische Messparameter	2
2.4	Bodenchemische und -physikalische Messparameter	7
2.5	Auswertung der Ergebnisse, statistische Verfahren	7
3	Ergebnisse und Diskussion	11
3.1	Bodenatmung (Netto-Mineralisation)	11
3.1.1	Übersicht aller Effekte	12
3.1.2	Standortspezifische Effekte	15
3.2	Biomasse (Substrat-Induzierte Respiration)	21
3.2.1	Übersicht aller Effekte	21
3.2.2	Standortspezifische Effekte	22
3.3	Dehydrogenaseaktivität	25
3.3.1	Übersicht aller Effekte	25
3.3.2	Standortspezifische Effekte	26
3.4	Xylanaseaktivität	30
3.4.1	Übersicht aller Effekte	30
3.4.2	Standortspezifische Effekte	30
3.5	Proteaseaktivität	34
3.5.1	Übersicht aller Effekte	34
3.5.2	Standortspezifische Effekte	35
3.6	Nitrifikationsumsatz	38
3.6.1	Übersicht aller Effekte	38
3.6.2	Standortspezifische Effekte	38
3.7	N-Mineralisationsrate	42
3.7.1	Übersicht aller Effekte	42
3.7.2	Standortspezifische Effekte	43

3.8	Saure Phosphataseaktivität	44
3.8.1	Übersicht aller Effekte	45
3.8.2	Standortspezifische Effekte	45
3.9	Sulfataseaktivität	53
3.9.1	Übersicht aller Effekte	53
3.9.2	Standortspezifische Effekte	54
3.10	Gesamtkeimzahl Bakterien	57
3.10.1	Übersicht aller Effekte	57
3.10.2	Standortspezifische Effekte	57
3.11	Gesamtkeimzahl Pilze	61
3.11.1	Übersicht aller Effekte	61
3.11.2	Standortspezifische Effekte	62
3.12	pH-Wert	66
3.12.1	Übersicht aller Effekte	66
3.12.2	Standortspezifische Effekte	66
3.13	Organische Substanz und Trockensubstanz	67
3.13.1	Übersicht aller Effekte	67
3.13.2	Standortspezifische Effekte	68
3.14	Korrelationen	78
4	Zusammenfassung	85
4.1	Einfluss der Dauerbeobachtungsfläche	85
4.2	Einfluss des Untersuchungsjahres	85
4.3	Einfluss der Jahreszeit	87
5	Summary	89
5.1	Effect of sites	89
5.2	Effect of the year of investigations	89
5.3	Effect of season	91
Anhan	g	95

1 EINLEITUNG

Hinsichtlich des wissenschaftlichen Hintergrundes zu bodenmikrobiologischen und bodenenzymatischen Untersuchungen in Waldböden verweisen wir auf die Einleitung des Endberichtes 1993.

Die Aufgabe vorliegender Untersuchungen war es, zwei unterschiedliche Waldstandorte Südtirols (Dauerbeobachtungsflächen) mit Hilfe eines umfassenden bodenmikrobiologischen und bodenenzymatischen Methodenspektrums zu charakterisieren. Es erfolgte eine Wiederholung der 1993 in Bodenproben der Dauerbeobachtungsflächen IT01 (Ritten) und IT02 (Montiggl) durchgeführten Analysen. Aus Gründen der internationalen Standardisierung wurden das Methodenspektrum noch erweitert.

2 MATERIAL UND METHODEN

2.1 Versuchsflächen

Die im Rahmen dieses Forschungsauftrages untersuchten zwei Waldstandorte Ritten (Dauerbeobachtungsfläche IT01) und Montiggl (Dauerbeobachtungsfläche IT02) repräsentieren weitverbreitete und forstlich bedeutsame Waldtypen Südtirols.

Die Fläche IT01 (Ritten) befindet sich unterhalb des Rittner Horns, in der Nähe der dortigen Luftmessstation über Porphyr in einer Seehöhe von 1720 m. Der Bodentyp ist ein einfacher Podzol. Die Pflanzengesellschft entspricht einem subalpinen Fichtenwald (*Piceetum subalpinum*). Im Unterwuchs dominieren Preiselbeere, Heidelbeere, Habichtskraut, Wald-Wachtelweizen, Arnika und Wald-Erdbeere.

Die Fläche IT02 (Montiggl) befindet sich oberhalb eines Fichtenwaldgürtels am Kleinen Montiggler See im Bereich einer felsdurchsetzten Kuppe über Porphyr in 543 m Seehöhe. Der Bodentyp ist eine Parabraunerde. Die Pflanzengesellschaft entspricht einem Flaumeichen-Mannaeschen-Buchenwald (*Quercetum pubescentis*). Im Unterwuchs dominieren Schneeheide, Schnee-Hainsimse, Habichtskraut und Salomonsiegel.

2.2 Probenahme und Probenvorbereitung

Die Probeentnahmen erfolgten zu zwei verschiedenen Termin, im Frühjahr und im Herbst 2000. Die Versuchsfläche Ritten wurde am 14. Juni und 12. September 2000, jene in

Montiggl am 10. Mai und 23. Oktober beprobt. Je Versuchsfläche wurden 10 Einzelproben mit einem Spaten aus dem A_h-Horizont der Böden im Traufenbereich der 1993 ausgewählten Bäume entnommen. Wegen der geringen Mächtigkeit des A_h-Horizontes musste z.T. auch der B-Horizont beprobt werden. Die Entnahmestellen der Bodenproben waren 1993 so ausgewählt worden, dass sie gleichmäßig über die Versuchsfläche verteilt waren.

Das Bodenmaterial wurde unmittelbar nach Probenahme nach Innsbruck transportiert und dort weiterverarbeitet. Die Bodenproben wurden gesiebt (2 mm Maschenweite). Bei Bedarf wurden die Bodenproben durch Ausbreiten auf Filterpapier bei Raumtemperatur bis auf einen siebfähigen Wassergehalt getrocknet. Die gesiebten Bodenproben wurden sofort analysiert bzw. in offenen Plastiksäcken bei 4°C gelagert.

2.3 Bodenmikrobiologische Messparameter

Als Grundlage für die praktische Durchführung der Analysen diente das Methodenbuch von Schinner et al. (1996). Die Durchführung folgender Messparameter erfolgte wie im Endbericht 1993 beschrieben:

- Bodenatmung (Netto-Mineralisation) (Isermeyer 1952, mod. nach Jäggi 1976)
- Substrat-Induzierte-Atmung (Anderson und Domsch 1978)
- Dehydrogenaseaktivität (Thalmann 1968, mod.)
- Xylanaseaktivität (Schinner und von Mersi 1990)
- Proteaseaktivität (Ladd und Butler 1972)
- Nitrifikationsumsatz (Beck 1976)
- Saure Phosphataseaktivität (Tabatabai und Bremner 1969)
- Arylsulfataseaktivität (Tabatabai und Bremner 1970)
- Keimzahlbestimmungen (Gesamtbakterienkeimzahl, Gesamtanzahl Pilze)

Zusätzlich wurden folgende Messparameter bestimmt (ICP-IM Manual August 1998):

- Bodenatmung (Netto-Mineralisation)
- N-Mineralisation
- Saure Phosphataseaktivität
- Streuabbau im Freiland (separater Bericht)
- Celluloseabbau im Freiland (separater Bericht)
- Celluloseabbau im Laborversuch (separater Bericht)

Bodenatmung (ICP-IM Manual August 1998)

Prinzip

Boden, der zuvor 12 Tage bei 20°C präinkubiert worden war, wurde in einem geschlossen System 18 Stunden bei 22°C inkubiert, das entweichende CO₂ wurde in Natronlauge absorbiert. Nach Rücktitration der unverbrauchten Lauge wurde die CO₂-Freisetzung errechnet.

Ausführung der Bestimmung

20 g naturfeuchtes Bodenmaterial wurde in Plastikbecher eingewogen, der Wassergehalt des Bodens wurde auf 50-60% der maximalen Wasserhaltekapazität (durch Besprühen mit dest. Wasser) eingestellt. Der Boden wurde 12 Tage lang bei 20°C inkubiert, der Wasserverlust (Differenzwägung) wurde regelmäßig durch Zusatz von dest. Wasser ausgeglichen.

Nach dieser Präinkubation wurde der Plastikbecher samt Bodenmaterial in ein Weckglas (1 Liter) gestellt. Ein Glasbecher, in den zuvor 5 ml 0,2 M NaOH pipettiert worden waren, wurde neben den Pastikbecher in das Weckglas gestellt. Das Weckglas wurde luftdicht verschlossen und 18 Stunden bei 22°C inkubiert. Danach wurde das in der Natronlauge absorbierte CO₂ durch Zusatz von 1 ml 1 M Bariumchlorid als Bariumcarbonat ausgefällt. Die unverbrauchte Natronlauge wurde nach Zugabe von 100 µl Phenolphthaleinlösung (1%ig in 60% Ethanol) mit einer 0,1 M Salzsäure titriert.

Die Bestimmung erfolgte in zweifacher Ausführung. Der Blindwert (Ansatz ohne Boden) wurde sechsfach angesetzt.

N-Mineralisation (Netto-N-Mineralisation) (ICP-IM Manual August 1998)

Prinzip

Wassergesättigte Bodenproben wurden unter aeroben Bedingungen bei 25°C inkubiert. Der aus organischen Verbindungen freigesetzte Ammonium- und Nitrat-Stickstoff wurden kolorimetrisch bestimmt. Diese Methode entspricht der von Beck (1983) beschriebenen Methode zur Bestimmung der N-Mineralisation im aeroben Brutversuch (Schinner et al. 1996).

Ausführung der Bestimmung

10 g naturfeuchter Boden wurden in vier 100 ml Erlenmeyerkolben eingewogen und tropfenweise mit 3 ml dest. Wasser versetzt. Bei der Zugabe des Wassers musste eine Verschlämmung des Bodens vermieden werden (nicht mischen). Die Kolben wurden mit Wattestopfen verschlossen und bei 25°C bebrütet; Wasserverlust durch Verdunstung wurde wöchentlich

durch Zusatz von dest. Wasser ausgeglichen. Unmittelbar nach Ansatz (0 Tage) und nach einer Inkubationsdauer von 28 Tagen wurden jeweils zwei Kolben entnommen. Der Kolbeninhalt wurde mit 50 ml 0,1 M KCl versetzt, 60 Minuten auf einem Horizontalschüttler (150 Upm) bei 25°C geschüttelt und anschließend filtriert. In den Filtraten wurde Ammonium-N und Nitrat-N kolorimetrisch bestimmt.

Zur Berechnung der N-Mineralisation wurde die Differenz des Gehaltes an mineralisiertem N (N_{min} ; (Summe aus NH_4^+ -N und NO_3^- -N) nach 28 Tagen und zu Versuchsbeginn gebildet. Zur Berechnung der Mineralisationsrate ($\mu g N/g OS/Tag$) wurde N_{min} durch die Inkubationszeit dividiert.

Saure Phosphataseaktivität (ICP-IM Manual August 1998)

Prinzip

Bodenproben wurden nach Zugabe einer gepufferten p-Nitrophenylphosphat-Lösung 2 Stunden bei 25°C inkubiert. Die enzymatisch freigesetzte Menge an p-Nitrophenol wurde mit Natronlauge angefärbt und kolorimetrisch bei 400 nm quantifiziert.

Ausführung der Bestimmung

Das zu analysierende naturfeuchte Bodenmaterial soll vorher ca. 2 Monate bei 4°C zur Stabilisierung der Enzymaktivität in offenen Plastiksäcken gelagert werden.

0,5 g naturfeuchter Boden wurde in drei 100 ml Erlenmeyerkolben eingewogen. Zwei Kolben (Vollproben) wurden mit 1 ml Substratlösung (115 mM p-Nitrophenylphosphat, gelöst in Acetatpuffer) und 4 ml 0,5 M Acetatpuffer (pH 5,0) versetzt, in den dritten Kolben (Leerprobe) wurden nur 4 ml Puffer pipettiert. Die Kolben wurden mit Gummistopfen verschlossen, gemischt und 2 Stunden bei 25°C inkubiert. Nach der Inkubation wurden zu Voll- und Leerproben 1 ml 0,5 M CaCl₂-Lösung und 4 ml 0,5 M NaOH pipettiert, die Leerproben wurden zusätzlich mit 1 ml Substratlösung versetzt. Voll- und Leerproben wurden mit 90 ml 0,1 M NaOH verdünnt, gemischt und durch Faltenfilter filtriert. Die Filtrate wurden je nach Bedarf 1:2 oder 1:5 mit 0,1 M NaOH verdünnt.

Zur Erstellung der Eichreihe (0, 20, 40, 60, 80, 100 μ g p-Nitrophenol (p-NP) im Ansatz; entsprechend 0, 144, 288, 431, 575, 719 μ M pNP im Ansatz) wurden 0 (Blindwert), 1, 2, 3, 4 und 5 ml p-NP-Lösung (20 μ g/ml 0,1 M NaOH; entsprechend 144 μ M) in sechs Reagenz-gläser pipettiert und mit 0,1 M NaOH auf 5 ml aufgefüllt. Nach Zusatz von 1 ml 0,5 M CaCl₂ und 1 ml 0,5 M NaOH wurden die Standards gemischt und durch doppelte Faltenfilter filtriert.

Die Extinktion der Standards sowie der Voll- und Leerproben wurde nach 1 Stunde photometrisch bei 400 nm gegen den Blindwert gemessen.

Streuabbau im Freiland (ICP-IM Manual August 1998)

Prinzip

Das Streumaterial (Kiefernnadeln) wurde in Taschen aus feinem Nylonnetz auf der Bodenoberfläche exponiert. Der Streuabbau nach 1, 2 und 3 Jahren wird nach Differenzwägung berechnet.

Ausführung der Bestimmung

Aus Gründen der Vergleichbarkeit der Ergebnisse wurde ein einheitlicher Streutyp (Kiefernnadeln) verwendet. Das Material wurde im August 2000 gesammelt und luftgetrocknet. Je 1 g Streu wurde in Nylonnetztaschen (10 cm x 10 cm; Maschenweite 1 mm) eingefüllt, die zusätzlich ein Nummernschild beinhalteten. Die Taschen wurden mit Nylonfaden zugenäht, das Gewicht wurde bestimmt und notiert. Jede Netztasche wurde mit einer Schnur und einem Etikett zur späteren Identifizierung versehen.

Die Auslegung der Netztaschen erfolgte an jedem Standort (Ritten: 12. September 2000, Montiggl: 23. Oktober 2000) entlang zweier Gradienten. Innerhalb jedes Gradienten wurden je 5 Taschen (mit jeweils 3 Parallelen) in einem Abstand von ca. 5 m auf der Bodenoberfläche ausgelegt und mit Standortstreu bedeckt (insgesamt je Standort 10 Auslegestellen, mit je 3 Parallelen). Ein enger Bodenkontakt (keine Lufträume durch Bewuchs) musste gewährleistet sein. Nach 1, 2 und 3 Jahren wird jeweils eine Tasche entnommen, von der Erde und der Schnur befreit, und bis zur Gewichtskonstanz getrocknet. Der Streubbau wird durch Differenzwägung bestimmt.

Celluloseabbau im Freiland (ICP-IM Manual August 1998)

Prinzip

Cellulose wurde in Taschen aus feinem Nylonnetz auf der Bodenoberfläche und knapp darunter exponiert. Der Celluloseabbau nach 1, 2 und 3 Jahren wird nach Differenzwägung berechnet.

Ausführung der Bestimmung

Als Standardmaterial wurde alpha-Cellulose (Schleicher und Schüll, Qualität 2668, 1 mm dick) verwendet. Je 4 getrocknete Cellulosestreifen (30 mm x 50 mm) wurden in Nylonnetztaschen (10 cm x 10 cm; Maschenweite 1 mm) eingefüllt, die zusätzlich ein Nummernschild

beinhalteten. Die Taschen wurden mit Nylonfaden zugenäht, das Gewicht wurde bestimmt und notiert. Jede Netztasche wurde mit einer Schnur und einem Etikett zur späteren Identifizierung versehen.

Die Auslegung der Netztaschen erfolgte an jedem Standort (Ritten: 12. September 2000, Montiggl: 23. Oktober 2000) entlang zweier Gradienten. Innerhalb jedes Gradienten wurden je 5 Taschen (jeweils 3 Parallelen) in einem Abstand von ca. 5 m auf der Bodenoberfläche ausgelegt und mit Standortstreu bedeckt (insgesamt je Standort 10 oberirdische Auslegestellen mit je 3 Parallelen). Ein enger Bodenkontakt (keine Lufträume durch Bewuchs) musste gewährleistet sein. Zusätzlich wurden je 3 Parallelen ca. 2 cm unter der Bodenoberfläche durch Einstich mit einem Spaten im 15° Winkel zur Oberfläche exponiert (insgesamt je Standort 10 unterirdische Auslegestellen mit je 3 Parallelen). Diese Maßnahme sollte zudem verhindern, dass die Taschen durch Tiere vertragen oder durch Wind weggeblasen werden. Nach 1, 2 und 3 Jahren wird jeweils eine oberflächlich aufliegende und eine eingegrabene

Nach 1, 2 und 3 Jahren wird jeweils eine oberflächlich aufliegende und eine eingegrabene Tasche (Parallele) entnommen, von der Erde und der Schnur befreit, und bis zur Gewichtskonstanz getrocknet. Der Streubbau wird durch Differenzwägung bestimmt.

Celluloseabbau im Laborversuch

Prinzip

Cellulose wurde auf der Bodenoberfläche exponiert. Der Celluloseabbau nach 1, 2, 4 und 6 Monaten bei 10°C und bei 20°C wurde nach Differenzwägung berechnet.

Ausführung der Bestimmung

Aus den im Herbst 2000 entnommenen Bodenproben wurde je Standort eine Mischprobe hergestellt. Der Wassergehalt wurde auf ca. 50% der maximalen Wasserhaltekapazität der Mischprobe eingestellt. Je Mischprobe wurden 35-40 g Bodenmaterial in 16 Glaspetrischalen eingewogen. Auf jede Bodenoberfläche wurde ein getrockneter Cellulosestreifen (30 mm x 50 mm, 1 mm Dicke), dessen Gewicht zuvor bestimmt worden war, aufgelegt. Die Petrischalen wurden mit einem Glasdeckel verschlossen. Je 8 Petrischalen wurden bei 10°C und bei 20°C inkubiert. Der Wasserverlust durch Verdunstung wurde wöchentlich durch Zusatz von dest. Wasser ausgeglichen. Nach 1, 2, 4 und 6 Monaten Inkubation werden je 2 Petrischalen pro Mischprobe und Inkubationstemperatur entnommen. Die Cellulosestreifen werden entnommen, von eventuellen Bodenresten befreit und bis zur Gewichtskonstanz bei 80°C getrocknet. Anschließend werde das Gewicht des getrockneten Cellulosstreifens bestimmt. Anhand des Gewichtsverlustes kann auf den Celluloseabbau geschlossen werden.

2.4 Bodenchemische und -physikalische Messparameter

Die Durchführung folgender Messparameter erfolgte wie im Endbericht 1993 beschrieben:

- Organische Substanz
- Maximale Wasserhaltekapazität

Zusätzlich wurden folgende Parameter bestimmt:

- Trockensubstanz (Trocknung bei 105°C)
- pH-Wert (10 mM CaCl₂)

Sämtliche im Frühjahr und Herbst 2000 durchgeführten Untersuchungen an den Dauerbeobachtungsflächen IT01 (Ritten) und IT02 (Montiggl) sind in Tab. 1 dargestellt.

2.5 Auswertung der Ergebnisse, statistische Verfahren

Bezugsgröße

Bodenmikrobiologische Daten werden, in Anlehnung an die Bodenchemie, in der Regel auf die Bodentrockensubstanz (TS) bezogen. Mikrobiologische Umsetzungen sind jedoch stark vom Gehalt des Bodens an organischer Substanz (OS) abhängig, da diese die Ernährungsgrundlage heterotropher Mikroorganismen darstellt. Bei vergleichenden Untersuchungen an Böden mit stark divergierenden Gehalten an OS ist diese somit die bessere Bezugsgröße für bodenmikrobiologische und -enzymatische Messparameter. Wie bereits 1993 wurden daher auch diesmal sämtliche Messergebnisse auf OS bezogen.

Nach den im ICP-IM Manual (1998) angegebenen Methoden können Aktivitäten auf TS oder OS bezogen werden. Aus Gründen der Homogenität und Vergleichbarkeit der Daten wurde auch bei diesen Methoden die OS als Bezugsgröße verwendet.

Statistik

Die statistische Auswertung der Daten wurde mit dem Programm Statistica (Edition 1999) durchgeführt. Für jeden Untersuchungsparameter wurde geprüft, ob die unabhängigen Faktoren (Dauerbeobachtungsfläche, Jahr der Untersuchung, Jahreszeit) allein oder in Kombination einen signifikanten Einfluss aufwiesen. Anschließend wurde für jede Beobachtungsfläche getestet, ob das Untersuchungsjahr (1993, 2000) und die Jahreszeit (Frühjahr, Herbst) den jeweiligen Untersuchungsparameter signifikant beeinflussten.

Zunächst wurden die Daten auf ihre Verteilung geprüft. Da der Datenumfang je Parameter jedoch sehr groß war (n=160), spielen die Abweichungen von der Normalverteilung keine große Rolle, da der Zentrale Grenzwertsatz gilt (StatSoft).

Normalverteile Daten wurden einer Varianzanalyse (ANOVA; 95% Signifikanzniveau) unterzogen. Bei diesem Test wird die Signifikanz von Mittelwertdifferenzen anhand der Analyse von Varianzen (Streuungen) getestet. ANOVA ermöglicht die Aufdeckung von Interaktionseffekten bzw. Wechselwirkungen zwischen Variablen.

Nicht parametrische Daten wurden zusätzlich mittels geeigneter Verfahren (Kruskal-Wallis-ANOVA und Median-Test; 95% Signifikanzniveau) geprüft. Die Interpretation des Kruskal-Wallis-Testes ist grundsätzlich mit der parametrischen einfaktoriellen ANOVA identisch, bis auf die Tatsache, das der Kruskal-Wallis-Test auf Rängen anstatt auf Mittelwerten basiert. Der Median-Test ist eine vergröberte Version der Kruskal-Wallis-ANOVA.

Die graphische Darstellung der statistischen Untersuchungen erfolgte analog zu 1993 mittels Box-Whisker-Plots in Kategorien. Ein solcher Plot fasst die Verteilung einer Variablen zusammen, die nach weiteren Gruppierungsvariablen oder unabhängigen Variablen kategorisiert (aufgegliedert) wurde. In diesem Plot werden die drei folgenden Komponenten der Verteilung zusammengefaßt:

- Eine (zentrale) Linie, um die zentrale Tendenz (Lokation) zu beschreiben.
- Eine Box (Kasten), um die Variabilität um diese zentrale Tendenz zu beschreiben.
- Whisker (engl. für "Barthaare"), die die Spannweite der Variablen oder ein anderes Variabilitätsmaß beschreiben.

Je nach Verteilung der Daten wurde zwischen folgenden Varianten des Box-Whisker-Plots gewählt:

- Normalverteilte Daten: Mittelwerte, Standardfehler der Mittelwerte (Box) und Standardabweichungen (Whisker)
- Nicht parametrische Daten: Mediane (zentrale Linie; jener Wert, der die Verteilung aller Werte zur Hälfte teilt, d.h. 50% der Werte für die entsprechende Variable liegen unterhalb und 50% überhalb des Medians), Quartile (Box; oberes und unteres Quartil) und Spannweiten (Whisker; enthält den minimalen und maximalen Wert für die entsprechende Variable)

Die Korrelationen zwischen den untersuchten Parametern wurden mittels Spearmans-Rangkorrelationen berechnet, da die Masse der Daten nicht normalverteilt war.

Tab. 1: Liste der im Frühjahr und Herbst 2000 durchgeführten Untersuchungen an den Dauerbeobachtungsflächen.

Parameter	Inkubationsbedingungen	Einheit	Abkürzung	Zitat
Bodenatmung (Netto-Min.)	22°C, 22 h	mg CO ₂ /(g OS * 22 h)	ATM	Jäggi 1976
Bodenatmung (Netto-Min.)	22°C, 18 h	$mg CO_2/(g OS * h)$	ATM-ICP	ICP-IM Manual 1998
Biomasse (SIR)	22°C, 4 h, Glucose	$mg CO_2/(100 g OS * h)$	SIR	Anderson und Domsch 1978
Dehydrogenaseaktivität	25°C, pH 7,8, 16 h	μ g TPF/(g OS * 16 h)	DHG	Thalmann 1968, mod.
Xylanaseaktivität	50°C, pH 5,5, 24 h	μ g GLC/(g OS * 24 h)	XYL	Schinner und von Mersi 1990
Proteaseaktivität	50°C, pH 8,1, 2 h	$\mu g TYR/(g OS * 2h)$	PROT	Ladd und Butler 1972
Nitrifikationsumsatz	25°C, 2-3 Wochen	% N/Tag	NITRIF	Beck 1976, 1979
N-Mineralisationsrate	25°C, 4 Wochen	μ g N/(g OS * Tag)	N-MIN	ICP-IM Manual 1998
Saure Phosphataseaktivität	37°C, pH 6,5, 1 h	μ g p-NP/(g OS * h)	PME	Tabatabai und Bremner 1969
Saure Phosphataseaktivität	25°C, pH 5,0, 2 h	μ mol p-NP/(g OS * h)	PME-ICP	ICP-IM Manual 1998
Arylsulfataseaktivität	37°C, pH 5,8, 1 h	μ g p-NP/(g OS * h)	SULF	Tabatabai und Bremner 1970
Gesamtkeimzahl Bakterien	30°C, 48 h, Standard I	cfu/g OS	BAKT	Endbericht 1993
Gesamtkeimzahl Pilze	30°C, 48 h, Malzagar	cfu/g OS	PILZE	Endbericht 1993
Streuabbau	Freiland	% Abbau	STREU	ICP-IM Manual 1998
Celluloseabbau	Freiland	% Abbau	CELL	ICP-IM Manual 1998
pH-Wert	10 mM CaCl ₂		pН	Schinner et al 1996
Trockensubstanz	105°C, 20 h	%	TS	Schinner et al 1996
organische Substanz	430°C, 3 h	%	OS	Schlichting et al. 1995
Wasserhaltekapazität		g H ₂ O/100 g	WHK	Schinner et al 1996

Tab. 2: Charakterisierung der vier Dauerbeobachtungsflächen.

Fläche	IT01 Ritten (BZ)	IT02 Montiggl (BZ)	IT03 Lavazè (TN)	IT04 Pomarolo (TN)
Standort	unterhalb Rittner Horn	Kl. Montiggler See	Lavazè Joch	nahe Savignano
Seehöhe (m ü.d.M.)	1720	543	1790	685
Untergestein	Porphyr	Porphyr	Porphyr	Porphyr
Bodentyp	einfacher Podzol	Parabraunerde	einfacher Podzol	alkalische Braunerde
Pflanzengesellschaft	Piceetum subalpinum	Quercetum pubescentis	Piceetum subalpinum	Quercetum pubescentis
Probenahme aus	$A_h (+ B)$	$A_h (+ B)$	A_h	A_h

ERGEBNISSE UND DISKUSSION

Bodenbiologische Messparameter, wie mikrobielle Biomasse (SIR), Bakterien- und Pilzkeimzahlen, Bodenatmung (Nettomineralisation), Nitrifikationsumsatz, N-Mineralisation, Bodenenzymaktivitäten (Dehydrogenase, Xylanase, Protease, Phosphatase, Sulfatase) unterliegen in ihrer Qualität, Quantität und Aktivität zahlreichen Umweltfaktoren. Von besonderer Bedeutung sind der Pflanzenbewuchs und die Streuqualität, Bodenfeuchte und Bodentemperatur, der Gehalt an organischer Substanz, Stickstoff und Phosphor, sowie der pH-Wert des Bodens, Belüftung und Bodenstruktur. Bodenbiologische Messparameter werden aus methodischen Gründen konventionsgemäß unter standardisierten Bedingungen (Feuchte, Temperatur, pH, etc.) durchgeführt und stellen somit potentielle Werte dar, die unter den jeweiligen Freilandbedingungen durchaus verschieden reagieren können. Nur durch aufwendige Simulationen von Freilandbedingungen könnten aktuelle Werte kalkuliert werden. Zu bemerken ist auch, daß mikrobielle Biomassen und Enzymaktivitäten des zellinternen Stoffwechsels empfindlicher und rascher auf Änderungen im Umgebungsmilieu reagieren als Bodenenzyme, die durch Immobilisierung an Humus- und Tonkolloide vor chemischer und biotischer Korrosion und Abbau geschützt sind.

Im folgenden werden die an allen vier Dauerbeobachtungsflächen (IT01 Ritten, IT02 Montiggl, IT03 Lavazè, IT04 Pomarolo) erzielten Ergebnisse dargestellt, da u.a. auch ein Vergleich der Flächen gewünscht war. Eine kurze Übersicht über die Charakteristik der vier Flächen gibt Tab. 2. Die detaillierten Messergebnisse aller durchgeführten Analysen in den vier Dauerbeobachtungsflächen in den Jahren 1993 und 2000 ist im Anhang zusammengefasst.

3.1 Bodenatmung (Netto-Mineralisation)

Für eine internationale Standardisierung ist die Bestimmung der Bodenatmung nach dem ICP-IM Manual (1998) vorgesehen. Da jedoch die Bestimmung dieser Aktivität im Jahre 1993 nach einer anderen Methode (Jäggi 1976) vorgenommen worden war, mussten die 1993 gemessenen Werte konvertiert werden. Die Konversion der Daten erfolgte anhand der Berechnung der Korrelation zwischen der Bodenatmung, gemessen in sämtlichen Bodenproben des Jahres 2000 nach Jäggi (1976) und nach dem ICP-IM Manual (1998). Es konnte eine signifikante Korrelation (p=0,0000; n=80; Pearson-Produkt-Moment-Korrelation für normalverteilte Daten) festgestellt werden (Abb. 1).

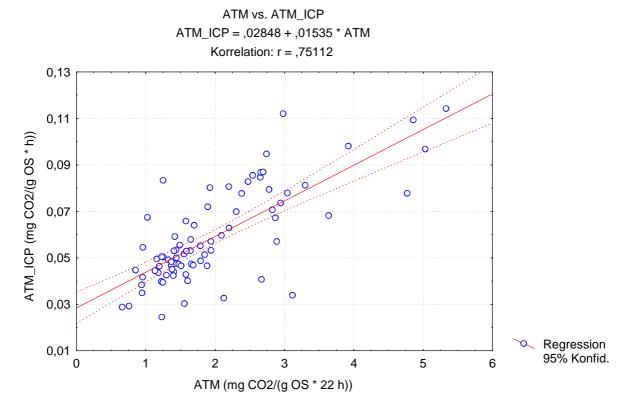
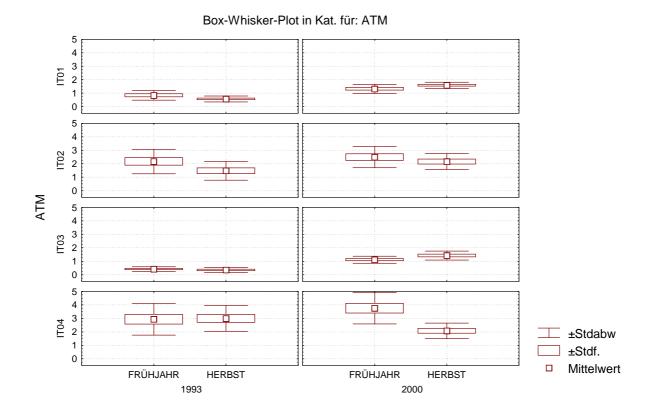


Abb. 1: Korrelation der Methoden zur Bestimmung der Bodenatmung (Netto-Mineralisation) nach Jäggi (1976) (ATM) und nach dem ICP-IM Manual (1998) (ATM-ICP).

Da die beiden Bestimmungsmethoden sich in mehreren Punkten unterscheiden (nach der ICP-Methode muss der Boden vor Bestimmung der Bodenatmung 12 Tage bei 20°C präinkubiert werden; die CO₂-Freisetzung wird unter anderen Ausgangsbedingungen gemessen als bei der Jäggi-Methode: Boden und NaOH stehen am Boden, die Temperatur ist nicht vorgegeben.), erfolgten die statistischen Berechnungen für beide Bestimmungsmethoden (Tab. 3-5).

3.1.1 Übersicht aller Effekte

Wurde die Bodenatmung nach Jäggi (1976) durchgeführt (ATM), zeigte sich, dass sowohl die vier Beobachtungsflächen als auch die beiden Untersuchungsjahre sowie die Jahreszeit einen signifikanten Einfluss auf die gemessene Bodenatmung hatten. Ebenso signifikant waren nahezu sämtliche Kombinationen aller Effekte, mit Ausnahme der Kombination Jahr und Jahreszeit (Tab. 4).


Wurde hingegen die Bodenatmung nach dem ICP-Manual (1998) bestimmt (ATM-ICP), hatten nur die Beobachtungsflächen und die Untersuchungsjahre, jedoch nicht Jahreszeit

einen signifikanten Einfluss auf die Bodenatmung. Nur die Kombination aller drei Effekte war signifikant bedeutsam (Tab. 4).

Unabhängig von der Bestimmungsmethode war die Bodenatmung der Flächen IT01 (Ritten) und IT03 (Lavazè) signifikant geringer als jene der Fläche IT02 (Montiggl), die wiederum signifikant geringer war als die Bodenatmung der Fläche IT04 (Pomarolo). Die im Jahr 2000 gemessene Bodenatmung war signifikant höher als jene von 1993. Nur nach der Jäggi-Methode konnte eine signifikant höhere Bodenatmung im Frühjahr als im Herbst nachgewiesen werden (Tab. 4, Abb. 2).

Tab. 3: Deskriptive Statistik des Parameters Atmung (Netto-Mineralisation), bestimmt nach Jäggi (ATM) und nach dem ICP-IM Manual (ATM-ICP), in den vier Dauerbeobachtungsflächen in den Jahren 1993 und 2000.

										Standard-	Quartils-
Parameter	Fläche)	Jahr	J.zeit	N	Mittelw.	Median	Minimum	Maximum	abw.	abstand
ATM	IT01	R	1993	F	10	0,839	0,855	0,340	1,300	0,360	0,730
ATM	IT01	R	1993	Н	10	0,568	0,565	0,350	1,090	0,221	0,280
ATM	IT01	R	2000	F	10	1,320	1,329	0,759	1,792	0,340	0,622
ATM	IT01	R	2000	Н	10	1,585	1,517	1,369	1,941	0,225	0,451
ATM	IT02	М	1993	F	10	2,168	2,040	0,550	3,980	0,910	0,480
ATM	IT02	М	1993	Н	10	1,479	1,470	0,310	2,550	0,695	1,010
ATM	IT02	М	2000	F	10	2,494	2,665	1,233	3,922	0,788	1,211
ATM	IT02	M	2000	Н	10	2,159	2,185	1,407	2,982	0,588	1,114
ATM	IT03	L	1993	F	10	0,418	0,390	0,190	0,700	0,171	0,180
ATM	IT03	L	1993	Н	10	0,355	0,285	0,230	0,790	0,176	0,110
ATM	IT03	L	2000	F	10	1,116	1,171	0,660	1,555	0,263	0,356
ATM	IT03	L	2000	Н	10	1,425	1,409	0,949	2,126	0,331	0,384
ATM	IT04	Р	1993	F	10	2,936	2,565	1,590	5,030	1,171	1,900
ATM	IT04	Ρ	1993	Н	10	2,995	2,900	1,990	4,560	0,956	1,930
ATM	IT04	Ρ	2000	F	10	3,750	3,377	1,940	5,331	1,160	1,914
ATM	IT04	Р	2000	Н	10	2,073	2,145	1,250	3,300	0,577	0,657
ATA 100	IT04		4000	_	40	0.044	0.040	2.224	0.040	0.000	2.244
ATM-ICP	IT01	R	1993	F	10	0,041	0,042	0,034	0,048	0,006	0,011
ATM-ICP ATM-ICP	IT01	R R	1993	H F	10 10	0,037	0,037	0,034	0,045	0,003	0,004
ATM-ICP ATM-ICP	IT01 IT01	R R	2000 2000	Н	-	0,050	0,052	0,029	0,067	0,011	0,011
ATIVEICE	1101	ĸ	2000	П	10	0,047	0,047	0,030	0,053	0,007	0,005
ATM-ICP	IT02	М	1993	F	10	0,062	0,060	0,037	0,090	0,014	0,007
ATM-ICP	IT02	М	1993	Н	10	0,051	0,051	0,033	0,068	0,011	0,016
ATM-ICP	IT02	М	2000	F	10	0,063	0,062	0,025	0,098	0,024	0,044
ATM-ICP	IT02	M	2000	Н	10	0,076	0,077	0,053	0,112	0,019	0,032
ATM-ICP	IT03	L	1993	F	10	0,035	0,034	0,031	0,039	0,003	0,003
ATM-ICP	IT03	L	1993	Н	10	0,034	0,033	0,032	0,041	0,003	0,002
ATM-ICP	IT03	L	2000	F	10	0,044	0,044	0,029	0,052	0,007	0,008
ATM-ICP	IT03	L	2000	Н	10	0,043	0,045	0,033	0,050	0,006	0,007
ATM-ICP	IT04	Р	1993	F	10	0,074	0,068	0,053	0,106	0,018	0,029
ATM-ICP	IT04	Р	1993	Н	10	0,074	0,073	0,059	0,098	0,015	0,030
ATM-ICP	IT04	Р	2000	F	10	0,078	0,076	0,034	0,114	0,024	0,029
ATM-ICP	IT04	Р	2000	Н	10	0,071	0,074	0,058	0,083	0,010	0,021

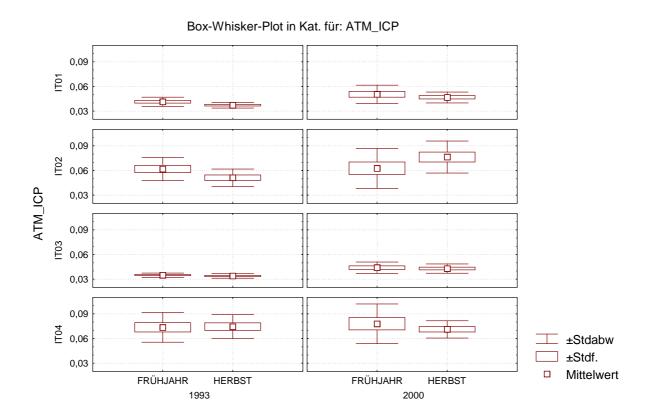


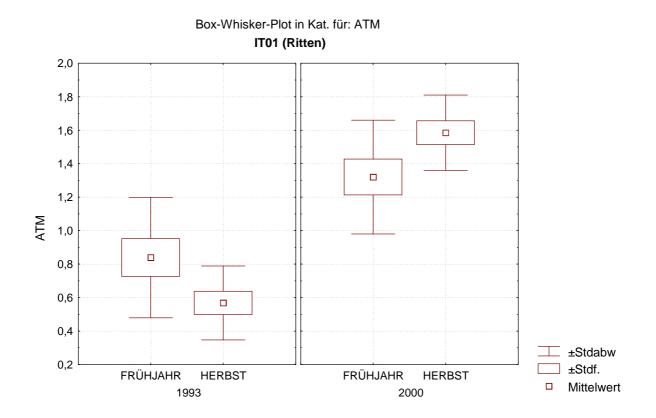
Abb. 2: Einfluss der Beobachtungsflächen, des Untersuchungsjahres und der Jahreszeit auf die Bodenatmung, bestimmt nach Jäggi (ATM) und nach dem ICP-IM Manual (ATM-ICP).

3.1.2 Standortspezifische Effekte

IT01 (Ritten)

Nach beiden Bestimmungsmethoden war die Bodenatmung in dieser Beobachtungsfläche im Jahr 2000 signifikant höher als im Jahr 1993, während die Jahreszeit (über beide Jahre betrachtet) keinen Einfluss hatte. Eine Kombination beider Effekte war nur nach der Jäggi-Methode signifikant bedeutsam (Tab. 5). Ebenfalls nur nach dieser Methode war die Bodenatmung im Frühjahr 1993 signifikant höher als im Herbst 1993; für 2000 konnte dieser Effekt jedoch nicht beobachtet werden (Abb. 3).

IT02 (Montiggl)


Nach beiden Bestimmungsmethoden war die Bodenatmung im Jahr 1993 signifikant geringer als im Jahr 2000. Die Jahreszeit hatte nur nach der Jäggi-Methode einen signifikanten Einfluss (die Bodenatmung war 1993 im Frühjahr signifikant höher als im Herbst). Die Kombination beider Effekte dagegen war nur nach der ICP-Methode signifikant bedeutsam (Tab. 5, Abb. 4).

IT03 (Lavazè)

Auch hier war die Bodenatmung 1993, unabhängig von der Bestimmungsmethode, signifikant geringer als 2000, während die Jahreszeit keinen signifikanten Einfluss hatte (Tab. 5, Abb. 5).

IT04 (Pomarolo)

Im Unterschied zu den restlichen drei Beobachtungsflächen war die Bodenatmung, unabhängig von der Bestimmungsmethode, in Pomarolo im Jahr 2000 nicht signifikant höher als im Jahr 1993. Die Jahreszeit, sowie die Kombination beider Effekte, spielte nur bei der Bestimmung der Bodenatmung nach der Jäggi-Methode eine Rolle (Tab. 5, Abb. 6). Hierbei konnte im Frühjahr 2000 eine signifikant höhere Bodenatmung als im Herbst 2000 gemessen werden.

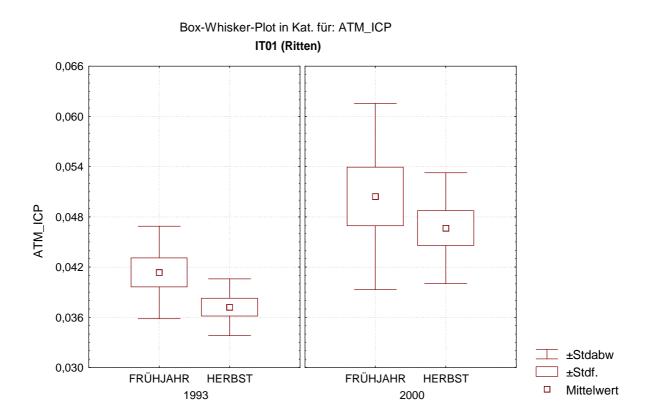
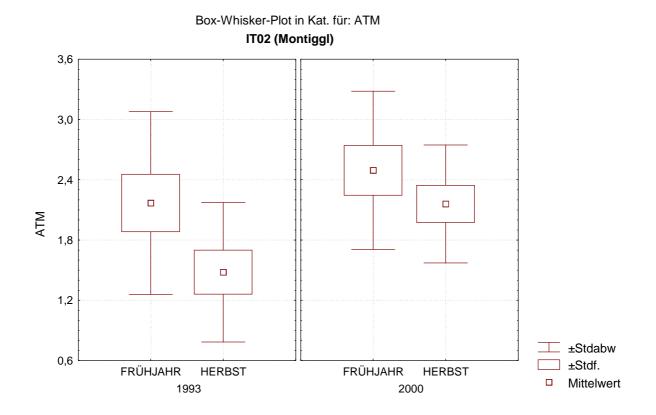



Abb. 3: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Bodenatmung der Beobachtungsfläche IT01 (Ritten), bestimmt nach Jäggi (ATM) und nach dem ICP-IM Manual (ATM-ICP).

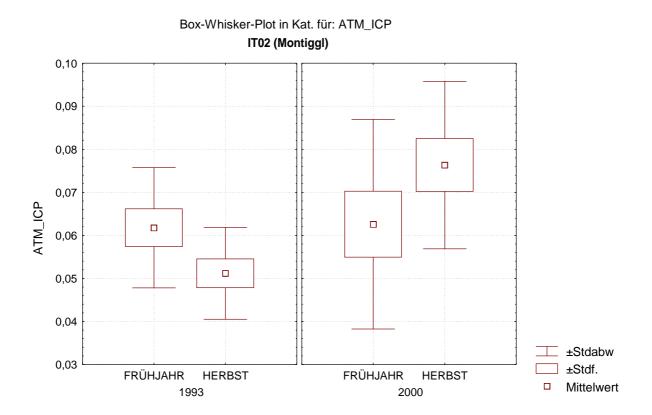
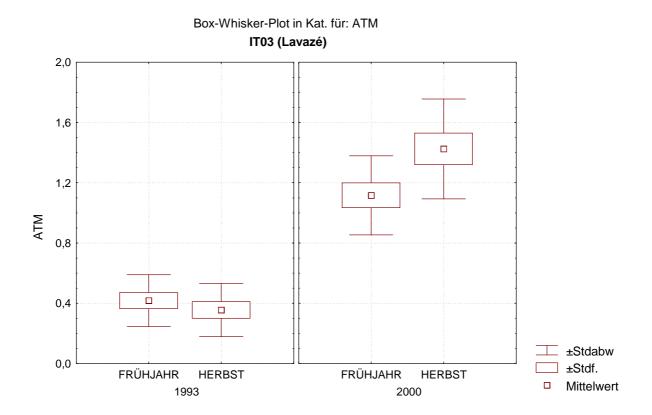



Abb. 4: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Bodenatmung der Beobachtungsfläche IT02 (Montiggl), bestimmt nach Jäggi (ATM) und nach dem ICP-IM Manual (ATM-ICP).

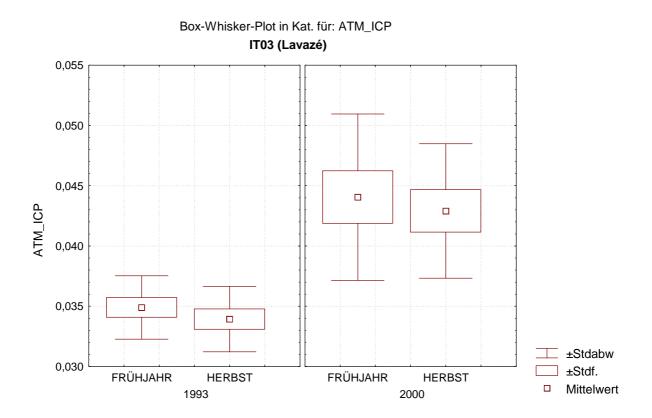
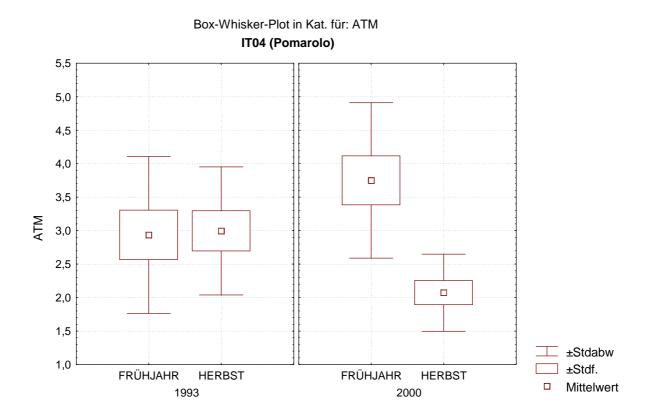



Abb. 5: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Bodenatmung der Beobachtungsfläche IT03 (Lavazè), bestimmt nach Jäggi (ATM) und nach dem ICP-IM Manual (ATM-ICP).

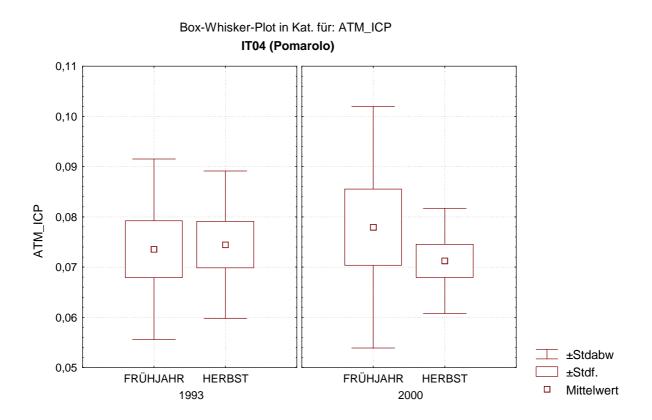


Abb. 6: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Bodenatmung der Beobachtungsfläche IT04 (Pomarolo), bestimmt nach Jäggi (ATM) und nach dem ICP-IM Manual (ATM-ICP).

Laboruntersuchungen zur Bodenatmung erlauben die Abschätzung des Mineralisationspotentials von Böden unter günstigen mikroklimatischen Bedingungen (60% relative Feuchte, 22°C). Die Messergebnisse lassen sich jedoch nicht unmittelbar auf die Mineralisationsleistung des Bodens im Freiland übertragen, da am Standort ständig wechselnde Feuchte- und Temperaturbedingungen stark modifizierend auf die Abbauleistung der Bodenmikroflora einwirken. Die Messung der Bodenatmung im Labor stellt also lediglich das Mineralisationspotential dar.

Der Anstieg der Bodenatmung (Netto-Mineralisation) in den Beobachtungsflächen kann auf verschiedene Ursachen zurückgeführt werden. Ein Argument wäre eine erhöhte Netto-Mineralisation infolge höherer Phytomasseproduktion und damit erhöhtem Streuanfall infolge der diskutierten Klimaerwärmung und höherer CO₂-Partialdrucke. Diese Hypothese kann mit Berichtlegung nicht bestätigt werden, da uns die Daten der Phytomasseproduktion, der atmosphärischen CO₂-Gehalte und der Temperaturen der vier Beobachtungsflächen für den Zeitraum 1993 bis 2000 nicht zur Verfügung standen.

An Hand uns vorliegender Messdaten erhebt sich jedoch der Verdacht, dass der Effekt der Einzäunung der Flächen einen großen Einfluss hatte. Durch die Einzäunung wurden Wildäung und Beweidung ausgeschlossen und damit ein ungestörtes Pflanzenwachstum des Unterwuchses gefördert. Daten zur Phytomasse des Unterwuchses könnten diese Hypothese bestätigen. In diesem Zusammenhang ist von besonderem Interesse, dass an den Probenahmestellen der nicht eingezäunten Fläche IT04 (Pomarolo) der oben genannte Effekt nicht auftrat. Es ist auch nicht auszuschließen, daß eine vorübergehende Anhäufung leicht zersetzbarer pflanzlicher Streu infolge ungünstiger Klimaentwicklungen (Trockenheit) in den Jahren 1999 und 2000 zu einer höheren Versorgung der Bodenmikroflora mit Nährsubstrat führte. Im standardisierten Laborexperiment zur Bestimmung der Netto-Mineralisation machte sich die erhöhte Verfügbarkeit von Nährsubstrat durch eine höhere Atmungs-(Mineralisations-)aktivität bemerkbar.

3.2 Biomasse (Substrat-Induzierte Respiration)

3.2.1 Übersicht aller Effekte

Beobachtungsfläche, Untersuchungsjahr und Jahreszeit beeinflussten die SIR signifikant, ebenso alle Kombinationen dieser Effekte, mit Ausnahme von Beobachtungsfläche und Jahreszeit. Diesem ANOVA-Ergebnis zufolge war die SIR 1993 niedriger als 2000; die geringste SIR wurde in der Fläche IT03 (Lavazè; Mittelwert 1430 mg CO₂/(100 g OS * h)), die höchste in der Fläche IT02 (Montiggl; 2480 mg CO₂/(100 g OS * h)) gemessen. Da die Daten zur SIR nicht normalverteilt waren, wurden zusätzliche Tests für solche Daten durchgeführt. Dabei bestätigte sich der signifikante Einfluss des Untersuchungsjahres (Kruskal-Wallis-ANOVA und Median-Test) und der Beobachtungsfläche (Kruskal-Wallis-ANOVA), jedoch nicht der signifikante Einfluss der Jahreszeit (Tab. 4, Abb. 7).

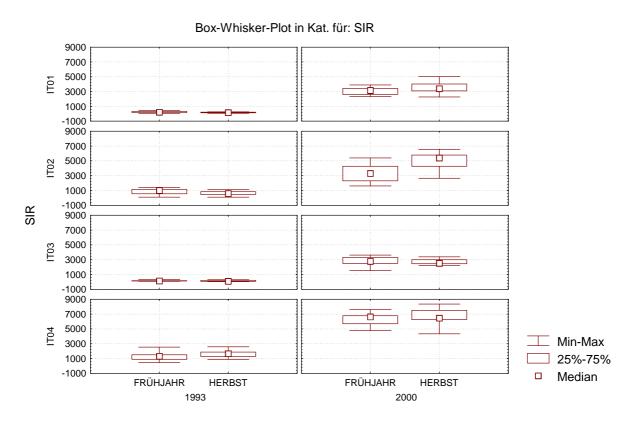


Abb. 7: Einfluss der Beobachtungsflächen, des Untersuchungsjahres und der Jahreszeit auf die Biomasse (SIR).

3.2.2 Standortspezifische Effekte

In allen vier Dauerbeobachtungsflächen konnte anhand des ANOVA-Tests ein signifikanter Einfluss des Untersuchungsjahres beobachtet werden. Die SIR war im Jahr 1993 signifikant geringer als im Jahr 2000. Dieses Ergebnis wurde auch durch beide Tests für nicht parametrische Daten bestätigt (Tab. 5, Abb. 8-11).

Ein signifikanter Einfluss der Jahreszeit, sowie der Kombination Untersuchungsjahr und Jahreszeit, konnte nur anhand des ANOVA-Tests in Montiggl (IT02) festgestellt werden. Den beiden Tests für nicht parametrische Verfahren zufolge hatte die Jahreszeit an keinem Standort eine signifikante Bedeutung (Tab. 5, Abb. 8-11).

Die deskriptive Statistik des Parameters Biomasse ist in Tab. 6 zusammengefasst.

Der Anstieg der mikrobiellen Biomasse (SIR) in den Bodenproben der vier Beobachtungsflächen im Vergleich zum Untersuchungsjahr 1993 korrespondiert mit den Daten der Netto-Mineralisation. Dies besagt, daß unter günstigen mikroklimatischen Bedingunen (Bodenfeuchte und -temperatur) mehr Biomasse eine höhere Mineralisations- und damit Atmungsaktivität bewirkt. Voraussetzung hierfür sind auch höhere Gehalte an organischer Substanz. Der Einfluß der Umzäunung (Ausschluss von Äsung und Weide) könnte auch für diesen Messparameter von Bedeutung sein. Es sei auch darauf hingewiesen, dass die Bodenproben der Standorte IT02 (Montiggl) und IT04 (Pomarolo) deutlich höhere Biomassegehalte aufwiesen als jene der Standorte IT01 (Ritten) und IT03 (Lavazè). Ursache hierfür sind die Klimabedingungen und die Bodeneigenschaften der verschiedenen Standorte. In warmen Klimaten, bei wenig sauren Böden, ist die Biomassebildung gegenüber kalten und sauren Standorten begünstigt. Der Nachweis hoher mikrobieller Biomassen in Böden ist nicht zwingend mit hohen Stoffumsetzungen gleichzusetzen, da die Organismen erst unter günstigen Umgebungsbedingungen (Feuchte, Temperatur, Nährstoffe) ihre Stoffumsatzleistungen aktivieren. Eine höhere Biomasse stellt somit nur das Potential für höhere Umsatzleistungen dar.

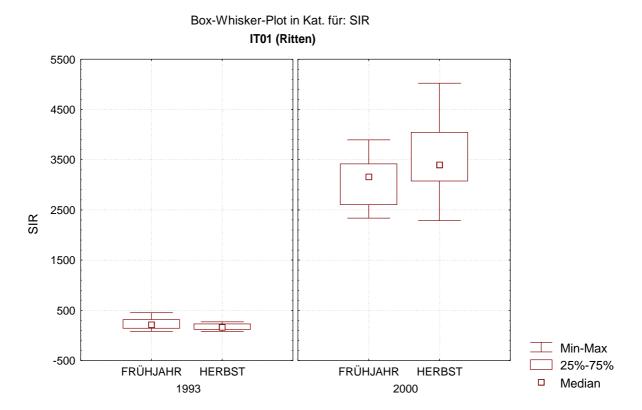


Abb. 8: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Biomasse (SIR) der Beobachtungsfläche IT01 (Ritten).

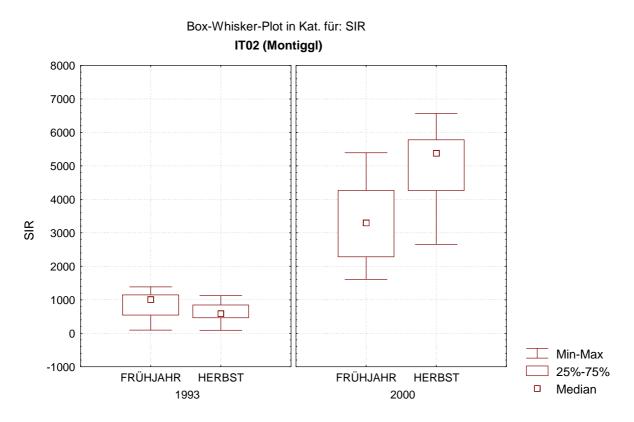


Abb. 9: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Biomasse (SIR) der Beobachtungsfläche IT02 (Montiggl).

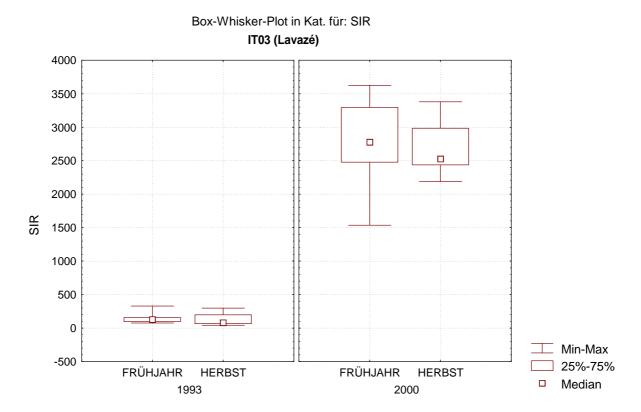


Abb. 10: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Biomasse (SIR) der Beobachtungsfläche IT03 (Lavazè).

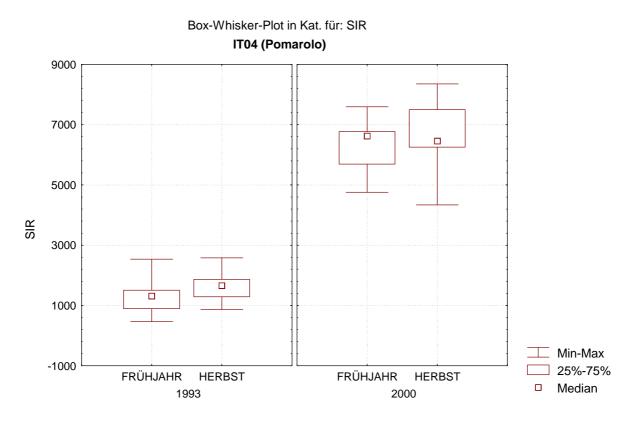


Abb. 11: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Biomasse (SIR) der Beobachtungsfläche IT04 (Pomarolo).

Tab. 6: Deskriptive Statistik des Parameters Biomasse (SIR) in den vier Dauerbeobachtungsflächen in den Jahren 1993 und 2000.

										Standard-	Quartils-
Parameter	Fläche)	Jahr	J.zeit	N	Mittelw.	Median	Minimum	Maximum	abw.	abstand
SIR	IT01	R	1993	F	10	231,93	213,85	81,80	452,10	117,153	175,300
SIR	IT01	R	1993	Н	10	172,59	164,45	79,30	270,20	67,085	115,100
SIR	IT01	R	2000	F	10	3067,41	3159,58	2336,14	3895,65	519,904	813,954
SIR	IT01	R	2000	Н	10	3513,74	3397,82	2285,23	5023,03	901,189	972,215
SIR	IT02	M	1993	F	10	871,02	1006,90	94,40	1384,10	392,525	606,700
SIR	IT02	M	1993	Н	10	634,90	588,45	90,90	1120,40	322,893	387,800
SIR	IT02	M	2000	F	10	3372,90	3297,62	1611,19	5393,31	1242,017	1989,807
SIR	IT02	M	2000	Н	10	5042,22	5376,85	2656,56	6561,67	1135,690	1519,167
SIR	IT03	L	1993	F	10	142,61	128,05	76,50	329,20	74,193	62,000
SIR	IT03	L	1993	Н	10	118,09	79,70	41,50	297,60	84,641	134,400
SIR	IT03	L	2000	F	10	2785,11	2776,33	1535,45	3625,24	653,156	821,378
SIR	IT03	L	2000	Н	10	2676,14	2526,71	2186,36	3380,10	412,656	548,453
SIR	IT04	Р	1993	F	10	1309,65	1316,50	469,50	2535,50	555,530	621,600
SIR	IT04	Ρ	1993	Н	10	1602,65	1660,00	870,30	2579,80	504,837	588,800
SIR	IT04	Ρ	2000	F	10	6320,92	6626,69	4759,88	7596,27	950,114	1091,371
SIR	IT04	Р	2000	Н	10	6507,72	6458,04	4339,60	8354,23	1173,839	1252,323

3.3 Dehydrogenaseaktivität

3.3.1 Übersicht aller Effekte

Beobachtungsfläche und Untersuchungsjahr beeinflussten die Dehydrogenaseaktivität signifikant, ebenso die Kombination dieser beiden Effekte. Diesem ANOVA-Ergebnis zufolge war die Aktivität 1993 signifikant höher als 2000; die geringste Aktivität war in der Fläche IT03 (Lavazè; Mittelwert 1430 µg TPF/(g OS * 16 h)) und die höchste in der Fläche IT04 (Pomarolo; 3935 µg TPF/(g OS * 16 h)) zu verzeichnen. Da die Daten zur Dehydrogenaseaktivität nicht normalverteilt waren, wurden zusätzliche Tests für solche Daten durchgeführt. Dabei bestätigte sich der signifikante Einfluss der Beobachtungsfläche; jener des Untersuchungsjahres wurde mittels Kruskal-Wallis-ANOVA, jedoch nicht mit dem Median-Test bestätigt. Ein signifikanter Einfluss der Jahreszeit konnte mit allen Tests ausgeschlossen werden (Tab. 4, Abb. 12).

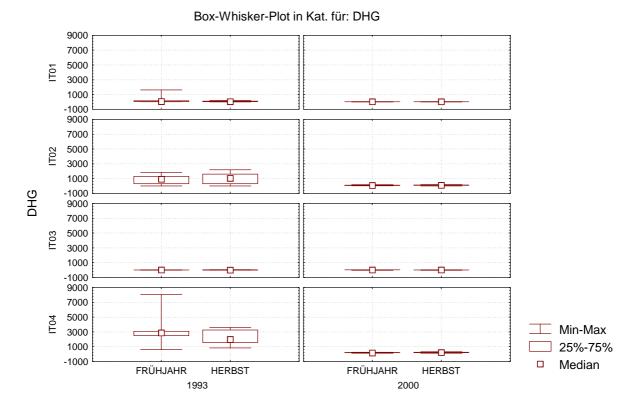


Abb. 12: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Dehydrogenaseaktivität (DHG).

3.3.2 Standortspezifische Effekte

Das Untersuchungsjahr beeinflusste nur in den Beobachtungsflächen IT02 (Montiggl) und IT04 (Pomarolo) die Dehydrogenaseaktivität in signifikantem Ausmaß. Hierbei war 1993 eine größere Aktivität als 2000 zu beobachten. Auch beide Tests für nicht parametrische Daten kamen zu diesem Ergebnis; nur der Kruskal-Wallis-ANOVA zufolge hatte das Untersuchungsjahr auch auf die Beobachtungsfläche IT01 (Ritten) einen signifikanten Einfluss (Tab. 5, Abb. 13-16).

Die Jahreszeit beeinflusste die Dehydrogenasektivität in keiner der vier Beobachtungsflächen. Dieses ANOVA-Ergebnis konnte mittels beider Tests für nicht parametrische Daten bestätigt werden. Auch die Kombination Untersuchungsjahr/Jahreszeit war nicht von signifikanter Bedeutung (Tab. 5, Abb. 13-16).

Die deskriptive Statistik des Parameters Dehydrogenaseaktivität ist in Tab. 7 zusammengefasst.

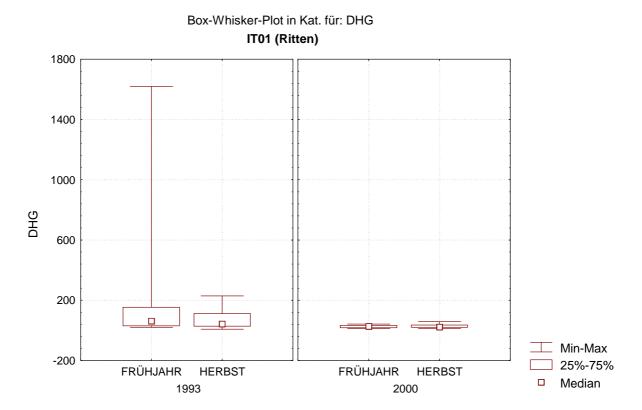


Abb. 13: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Dehydrogenaseaktivität (DHG) der Beobachtungsfläche IT01 (Ritten).

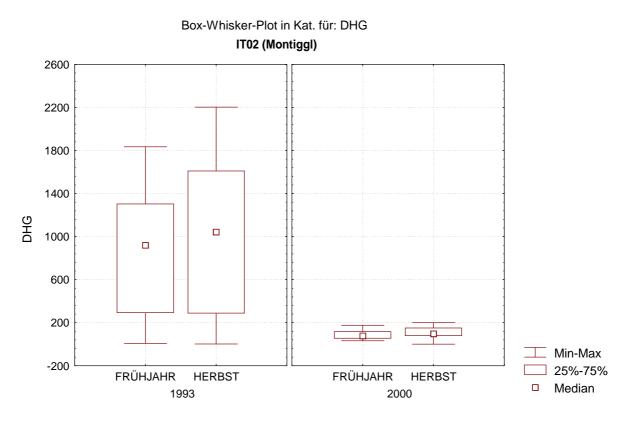


Abb. 14: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Dehydrogenaseaktivität (DHG) der Beobachtungsfläche IT02 (Montiggl).

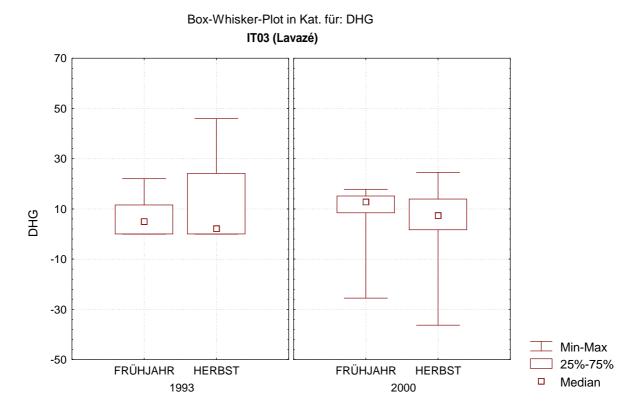


Abb. 15: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Dehydrogenaseaktivität (DHG) der Beobachtungsfläche IT03 (Lavazè).

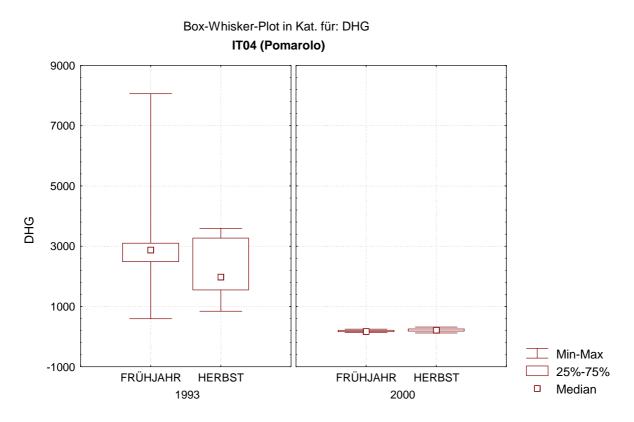


Abb. 16: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Dehydrogenaseaktivität (DHG) der Beobachtungsfläche IT04 (Pomarolo).

Tab. 7: Deskriptive Statistik des Parameters Dehydrogenaseaktivität (DHG) in den vier Dauerbeobachtungsflächen in den Jahren 1993 und 2000.

										Standard-	Quartils-
Parameter	Fläche)	Jahr	J.zeit	N	Mittelw.	Median	Minimum	Maximum	abw.	abstand
DHG	IT01	R	1993	F	10	226,16	61,90	20,30	1619,00	492,249	124,100
DHG	IT01	R	1993	Н	10	72,79	42,30	8,10	229,20	72,688	86,000
DHG	IT01	R	2000	F	10	25,62	27,16	12,56	41,82	10,403	17,181
DHG	IT01	R	2000	Н	10	27,53	23,20	13,41	57,62	13,483	16,595
DHG	IT02	M	1993	F	10	865,25	920,30	8,10	1835,30	666,510	1011,800
DHG	IT02	M	1993	Н	10	1027,02	1042,90	2,80	2203,80	790,148	1322,400
DHG	IT02	Μ	2000	F	10	89,84	77,61	31,24	176,34	43,456	63,558
DHG	IT02	М	2000	Н	10	105,35	96,34	1,10	199,41	55,529	73,147
DHG	IT03	L	1993	F	10	6,35	5,00	0,00	22,00	7,295	11,600
DHG	IT03	L	1993	Н	10	10,89	2,15	0,00	45,90	15,945	24,100
DHG	IT03	L	2000	F	10	8,72	12,79	-25,53	17,83	12,586	6,739
DHG	IT03	L	2000	Н	10	4,87	7,38	-36,30	24,59	16,344	12,325
DHG	IT04	Р	1993	F	10	3065,77	2873,20	593,80	8059,10	2013,554	621,900
DHG	IT04	Ρ	1993	Н	10	2258,28	1977,95	844,00	3596,90	1040,673	1723,400
DHG	IT04	Ρ	2000	F	10	180,59	170,76	130,70	244,97	38,714	52,454
DHG	IT04	Р	2000	Н	10	215,53	214,17	121,12	316,83	60,597	78,080

Die Dehydrogenasen stellen einen Enzymkomplex des zellinternen Stoffwechsels der Bodenmikroorganismen dar. Die Dehydrogenaseaktivität zeigte an den Standorten IT02 (Montiggl) und IT04 (Pomarolo) im Jahr 2000 deutlich niedrigere Werte als im Jahr 1993. Eine niedrigere Dehydrogenaseaktivität bei höheren Biomassegehalten legt den Schluss nahe, dass im Untersuchungsjahr 2000 ein für den mikrobiellen Stoffumsatz ungünstigeres Bodenmikroklima (z.B. Trockenheit) herrschte als im Untersuchungsjahr 1993. An den Standorten IT01 (Ritten) und IT03 (Lavazè) trat dieser Effekt nicht in dieser Weise auf. Höhere Rohhumusgehalte (damit ein besseres Wasserhaltevermögen) und ein feuchteres Klima an diesen Standorten könnten eine nachhaltige Hemmung der Stoffumsetzungen verhindert haben.

Die insgesamt äußerst niedrigen Stoffwechselaktivitäten in den gegenüber Tallagen klimatisch benachteiligten sauren Böden der subalpinen Standorte Ritten und Lavazè werden durch die Ergebnisse der Dehydrogenaseaktivitätsbestimmungen in eindrucksvoller Weise belegt.

3.4 Xylanaseaktivität

3.4.1 Übersicht aller Effekte

Die Xylanaseaktivität wurde von allen untersuchten Effekten (Beobachtungsfläche, Untersuchungsjahr, Jahreszeit) sowie deren möglichen Kombinationen signifikant beeinflusst. Dieses ANOVA-Ergebnis wurde durch beide Tests für nicht parametrische Datenb bestätigt (Tab. 4, Abb. 17). Die Xylanaseaktivität war im Jahr 1993 signifikant höher als im Jahr 2000, ebenso nahm die Aktivität im Herbst gegenüber dem Frühjahr signifikant ab. Die Aktivität in den beiden Flächen IT03 (Lavazè; Mittelwert 5342 μ g GLC/(g OS * 24 h)) und IT01 (Ritten; 5604 μ g GLC/(g OS * 24 h)) war signifikant geringer als in den beiden übrigen Flächen (15335-16787 μ g GLC/(g OS * 24 h)).

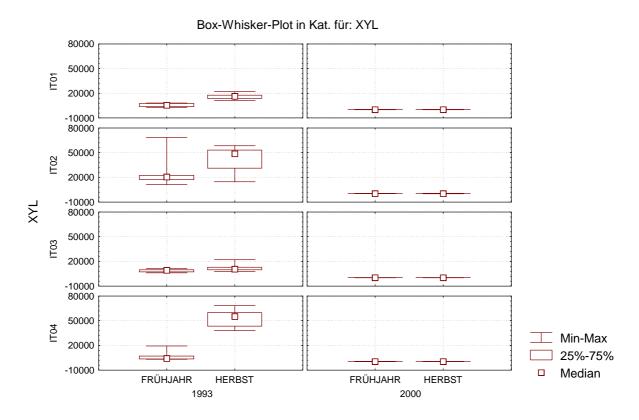


Abb. 17: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Xylanaseaktivität (XYL).

3.4.2 Standortspezifische Effekte

In allen vier Dauerbeobachtungsflächen konnte anhand des ANOVA-Tests ein signifikanter Einfluss des Untersuchungsjahres, der Jahreszeit sowie der Kombination beider Effekte beobachtet werden. Die Xylanaseaktivität war in jeder Fläche im Jahr 1993 signifikant höher

als im Jahr 2000, ebenso war die Aktivität im Herbst höher als im Frühjahr. Der signifikante Einfluss des Untersuchungsjahres konnte anhand beider Tests für nicht parametrische Daten bestätigt werden, nicht jedoch der signifikante Einfluss der Jahreszeit (Tab. 5, Abb. 18-21). Die deskriptive Statistik des Parameters Xylanaseaktivität ist in Tab. 8 zusammengefasst.

Die Xylanaseaktivität wurde als "Zeigerenzym" für den Holzabbau gemessen, da Xylane neben Cellulose den Hauptbestandteil der verholzten pflanzlichen Biomasse darstellen. Im Vergleich zum Untersuchungsjahr 1993 war die Xylanaseaktivität an sämtlichen Beobachtungsflächen äußerst niedrig. Dies läßt den Schluss zu, daß zumindest in den Jahren 1999 und 2000 für den mikrobielle Streuabbau längerfristig ungünstige klimatische Bedingungen (z.B. Trockenheit) eingetreten waren und die mikrobielle Ausscheidung von Xylanasen gehemmt wurde. Die niedrigen Aktivitäten an den Standorten IT01 (Ritten) und IT03 (Lavazè) sind auf klimatisch und bodenkundlich ungünstigere Verhältnisse für mikrobielle Stoffumsetzungen zurückzuführen.

Eine Abnahme des Anfalles pflanzlicher Streu (von Bäumen und Unterwuchs) könnte ebenfalls eine gewisse Rolle spielen. Diese Vermutung müsste allerdings durch entsprechende Messdaten überprüft werden. Die von uns durchgeführten Messungen zur mikrobiellen Biomasse und Bodenatmung sprechen nicht für diese Annahme.

Tab. 8: Deskriptive Statistik des Parameters Xylanaseaktivität (XYL) in den vier Dauerbeobachtungsflächen in den Jahren 1993 und 2000.

										Standard-	Quartils-
Parameter	Fläche)	Jahr	J.zeit	N	Mittelw.	Median	Minimum	Maximum	abw.	abstand
XYL	IT01	R	1993	F	10	5650,00	5500,00	3000,00	8200,00	2045,184	4000,000
XYL	IT01	R	1993	Н	10	16450,00	16400,00	11500,00	22000,00	3284,391	4000,000
XYL	IT01	R	2000	F	10	172,13	157,13	133,04	227,77	33,161	49,998
XYL	IT01	R	2000	Н	10	146,28	140,28	18,36	274,65	76,040	74,102
XYL	IT02	М	1993	F	10	23870,00	20450,00	11200,00	68600,00	16191,428	5400,000
XYL	IT02	M	1993	H	10	42540,00	48600,00	14700,00	58400.00	14407,729	22100,000
XYL	IT02	M	2000	F	10	381,21	369,16	231,76	541,65	84,104	105,753
XYL	IT02	М	2000	Н	10	359,32	370,17	140,71	567,28	104,129	57,310
XYL	IT03	L	1993	F	10	8849,00	9295,00	6200,00	11320,00	1639,529	2630,000
XYL	IT03	L	1993	H	10	12202,00	10610,00	7870,00	21990,00	4545,207	3340,000
XYL	IT03	L	2000	F	10	143.43	134.88	37.12	212,16	57.331	95,933
XYL	IT03	L	2000	Н	10	175,10	179,97	81,31	246,16	52,518	83,666
XYL	IT04	Р	1993	F	10	7287,00	4225,00	3250,00	19360,00	6363,931	3860,000
XYL	IT04	Р	1993	Н	10	53157,00	55195,00	37960,00	68350,00	11001,673	16690,000
XYL	IT04	Р	2000	F	10	482,68	462,29	385,36	614,61	77,604	108,696
XYL	IT04	P	2000	H	10	411,50	433,87	223,62	601,25	116,519	140,893

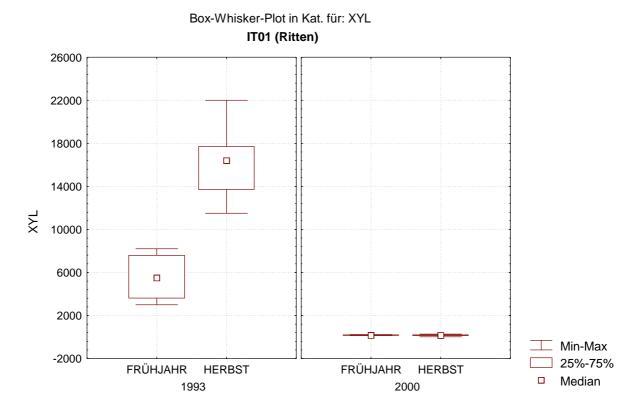


Abb. 18: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Xylanaseaktivität (XYL) der Beobachtungsfläche IT01 (Ritten).

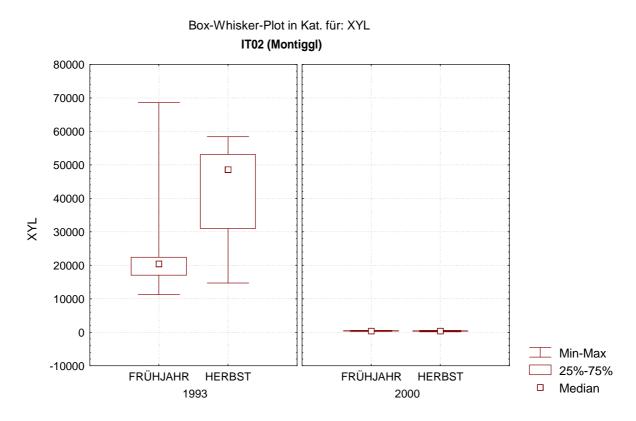


Abb. 19: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Xylanaseaktivität (XYL) der Beobachtungsfläche IT02 (Montiggl).

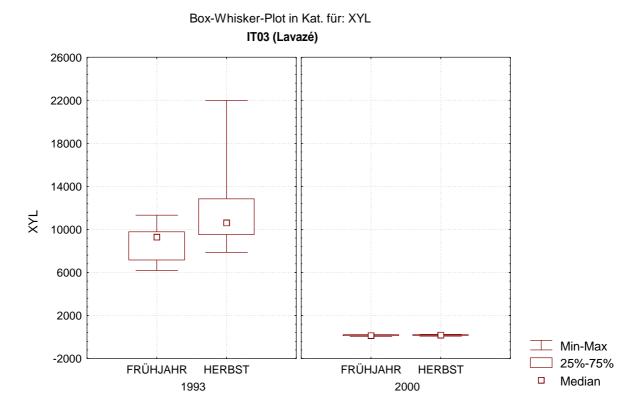


Abb. 20: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Xylanaseaktivität (XYL) der Beobachtungsfläche IT03 (Lavazè).

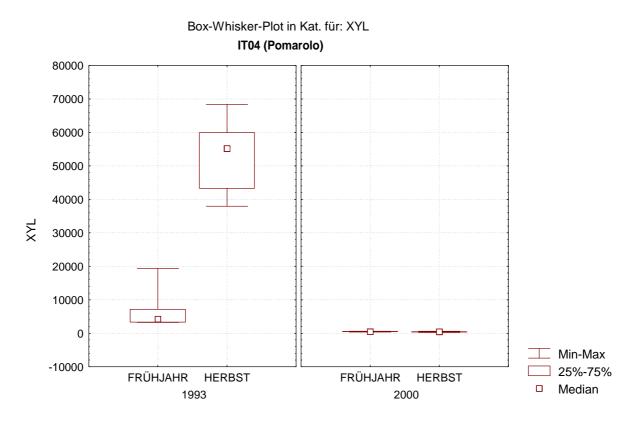


Abb. 21: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Xylanaseaktivität (XYL) der Beobachtungsfläche IT04 (Pomarolo).

3.5 Proteaseaktivität

3.5.1 Übersicht aller Effekte

Beobachtungsfläche und Untersuchungsjahr beeinflussten die Proteaseaktivität signifikant, ebenso die Kombination dieser beiden Effekte. Diesem ANOVA-Ergebnis zufolge war die Aktivität 1993 signifikant höher als 2000; die Aktivität war in den Flächen IT03 (Lavazè; Mittelwert 157 µg TYR/(g OS * 2 h))) und IT01 (Ritten; 614 µg TYR/(g OS * 2 h)) signifikant geringer als in den anderen zwei Flächen (2376-2919 µg TYR/(g OS * 2 h)). Da die Daten zur Proteaseaktivität nicht normalverteilt waren, wurden zusätzliche Tests für solche Daten durchgeführt. Dabei bestätigte sich der signifikante Einfluss der Beobachtungsfläche; jener des Untersuchungsjahres wurde mittels Kruskal-Wallis-ANOVA, jedoch nicht mit dem Median-Test bestätigt. Ein signifikanter Einfluss der Jahreszeit konnte mit allen Tests ausgeschlossen werden (Tab. 4, Abb. 22).

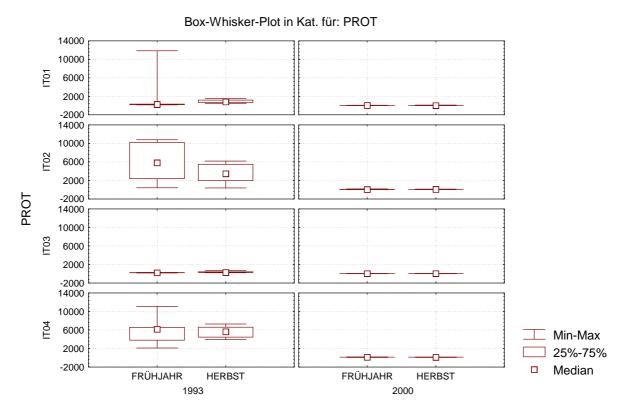


Abb. 22: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Proteaseaktivität (PROT).

3.5.2 Standortspezifische Effekte

Das Untersuchungsjahr beeinflusste nur in der Beobachtungsfläche IT01 (Ritten) die Proteaseaktivität nicht in signifikantem Ausmaß. In den anderen drei Flächen war 1993 eine signifikant höhere Aktivität als 2000 zu beobachten. Auch beide Tests für nicht parametrische Daten kamen zu diesem Ergebnis; der Kruskal-Wallis-ANOVA zufolge hatte das Untersuchungsjahr auf alle vier Beobachtungsflächen einen signifikanten Einfluss (Tab. 5, Abb. 23-26).

Die Jahreszeit beeinflusste die Proteaseaktivität nur in der Fläche IT03 (Lavazè), wobei die Aktivität im Frühjahr signifikant niedriger als im Herbst war. Dieses ANOVA-Ergebnis konnte jedoch mit den Tests für nicht parametriche Daten nicht bestätigt werden; demzufolge übte die Jahreszeit in keiner Beobachtungsfläche einen bedeutenden Einfluss auf die Proteaseaktivität aus. Auch die Kombination Untersuchungsjahr/Jahreszeit war nicht von signifikanter Bedeutung (Tab. 5, Abb. 23-26).

Die deskriptive Statistik des Parameters Proteaseaktivität ist in Tab. 9 zusammengefasst.

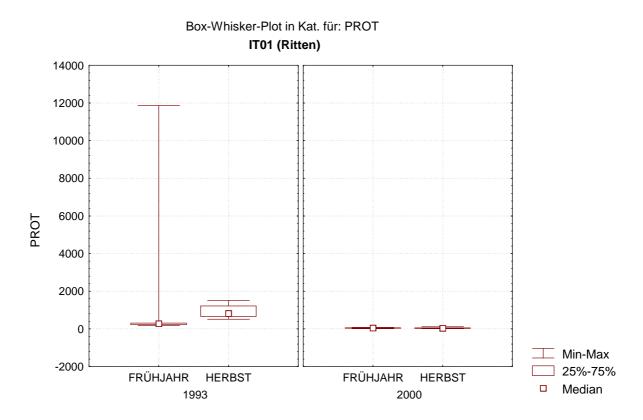


Abb. 23: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Proteaseaktivität (PROT) der Beobachtungsfläche IT01 (Ritten).

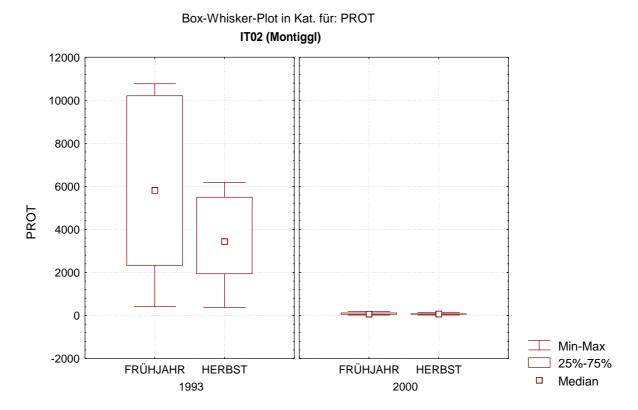


Abb. 24: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Proteaseaktivität (PROT) der Beobachtungsfläche IT02 (Montiggl).

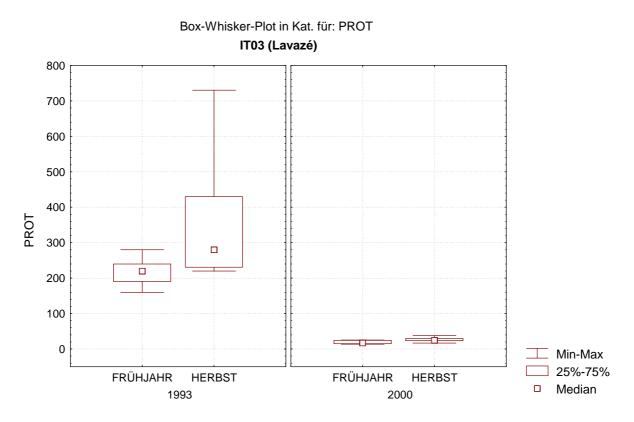


Abb. 25: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Proteaseaktivität (PROT) der Beobachtungsfläche IT03 (Lavazè).

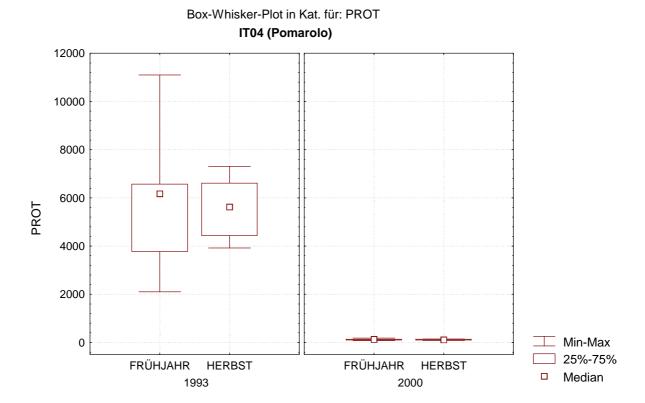


Abb. 26: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Proteaseaktivität (PROT) der Beobachtungsfläche IT04 (Pomarolo).

Tab. 9: Deskriptive Statistik des Parameters Proteaseaktivität (PROT) in den vier Dauerbeobachtungsflächen in den Jahren 1993 und 2000.

										Standard-	Quartils-
Parameter	Fläche	!	Jahr	J.zeit	N	Mittelw.	Median	Minimum	Maximum	abw.	abstand
PROT	IT01	R	1993	F	10	1433,00	280,00	170,00	11860,00	3664,305	90,000
PROT	IT01	R	1993	Н	10	937,00	825,00	510,00	1520,00	349,636	560,000
PROT	IT01	R	2000	F	10	43,52	47,04	15,31	78,85	19,910	30,187
PROT	IT01	R	2000	Н	10	43,41	35,15	12,48	113,55	32,089	29,722
PROT	IT02	М	1993	F	10	5887,00	5820,00	410,00	10770,00	4250,838	7880,000
PROT	IT02	М	1993	Н	10	3464,00	3435,00	380,00	6180,00	1906,213	3570,000
PROT	IT02	М	2000	F	10	82,71	62,26	22,71	177,57	48,307	58,872
PROT	IT02	М	2000	Н	10	72,00	68,45	25,29	137,67	29,923	16,864
PROT	IT03	L	1993	F	10	217,00	220,00	160,00	280,00	35,606	50,000
PROT	IT03	L	1993	Н	10	366,00	280,00	220,00	730,00	186,381	200,000
PROT	IT03	L	2000	F	10	18,59	17,21	13,56	25,39	4,796	9,655
PROT	IT03	L	2000	Н	10	25,93	24,77	16,73	38,16	6,349	6,049
PROT	IT04	Р	1993	F	10	5843,00	6170,00	2100,00	11100,00	2417,685	2800,000
PROT	IT04	Р	1993	Н	10	5593,00	5620,00	3920,00	7310,00	1145,591	2180,000
PROT	IT04	Р	2000	F	10	126,83	133,13	76,16	184,18	32,432	39,755
PROT	IT04	Р	2000	Н	10	112,83	109,39	82,91	144,00	22,044	39,851

Proteasen sind Enzyme, die am primären Abbau von pflanzlichen, tierischen und mikrobiellen Proteinen ansetzen. Die Proteaseaktivität beschreibt das Abbaupotential für Proteine unter standardisierten Bedingungen und lässt Rückschlüsse auf Leistungen im Stickstoffkreislauf des untersuchten Bodens zu. Ob und wie intensiv die gemessenen Proteaseaktivitäten an den untersuchten Standorten wirksam werden, hängt von den jeweiligen Temperatur- und Feuchteverhältnissen ab.

Die deutliche Abnahme der Proteaseaktivität in den Böden der untersuchten Standorte lässt auf ungünstige klimatische Verhältnisse in den Jahren 1999 und 2000 schließen. Es wäre auch zu überprüfen, ob nicht auch eine Abnahme der Biomasse von Bodentieren mit diesem Phänomen im Zusammenhang steht.

3.6 Nitrifikationsumsatz

3.6.1 Übersicht aller Effekte

Keiner der untersuchten Effekte (Beobachtungsfläche, Untersuchungsjahr, Jahreszeit), allein oder in Kombination, hatte einen signifikanten Einfluss auf den Nitrifikationsumsatz. Dieses ANOVA-Ergebnis wurde durch beide Tests für nicht parametrische Daten bestätigt (Tab. 4, Abb. 27).

3.6.2 Standortspezifische Effekte

Nur in der Fläche IT03 (Lavazè) war der Nitrifikationsumsatz 1993 signifikant geringer als im Jahr 2000, in den anderen drei Flächen konnte kein Unterschied zwischen 1993 und 2000 erkannt werden. Dieses ANOVA-Ergebnis konnte jedoch durch Tests für nicht parametrische Daten nicht bestätigt werden. Sowohl der Kruskal-Wallis-ANOVA als auch dem Median-Test zufolge war der Nitrifikationsumsatz in den Flächen IT01 (Ritten), IT02 (Montiggl) und IT03 (Lavazè) 1993 signifikant niedriger als 2000, während nur in der Fläche IT04 (Pomarolo) der Nitrifikationsumsatz im Jahr 1993 höher war als 2000 (Tab. 5, Abb. 28-31).

Ein signifikanter Einfluss der Jahreszeit auf den Nitrifikationsumsatz konnte mit allen Testverfahren ausgeschlossen werden (Tab. 5, Abb. 28-31).

Die deskriptive Statistik des Parameters Proteaseaktivität ist in Tab. 10 zusammengefasst.

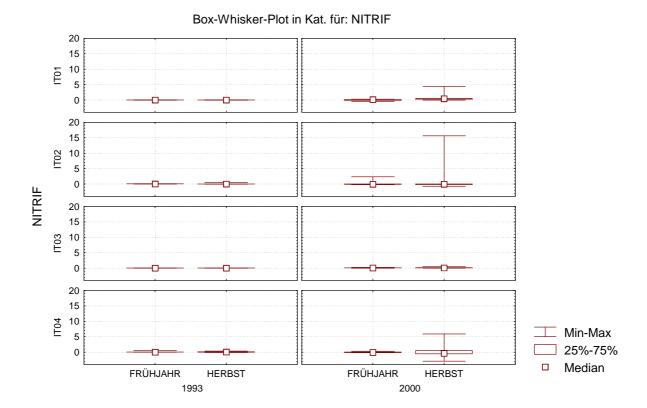


Abb. 27: Einfluss des Untersuchungsjahres und der Jahreszeit auf den Nitrifikationsumsatz (NITRIF).

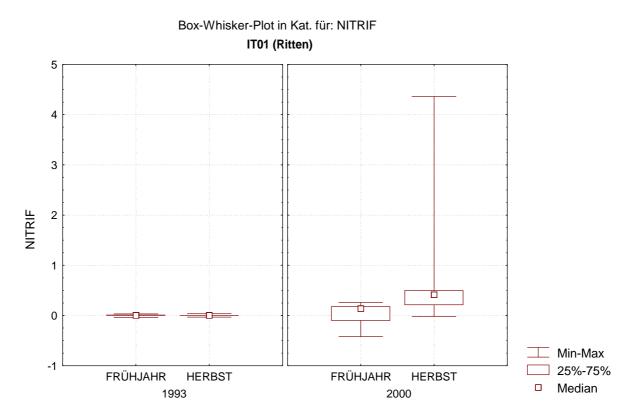


Abb. 28: Einfluss des Untersuchungsjahres und der Jahreszeit auf den Nitrifikationsumsatz (NITRIF) der Beobachtungsfläche IT01 (Ritten).

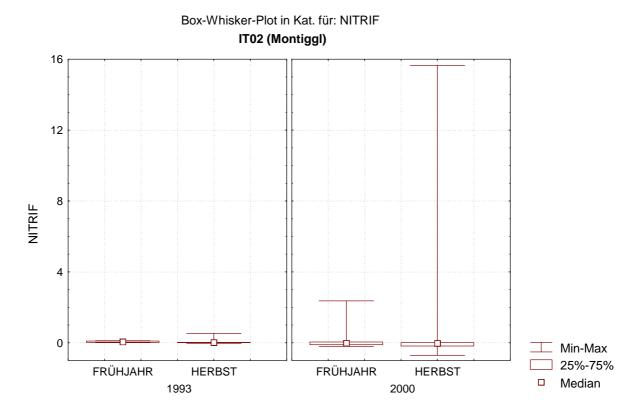


Abb. 29: Einfluss des Untersuchungsjahres und der Jahreszeit auf den Nitrifikationsumsatz (NITRIF) der Beobachtungsfläche IT02 (Montiggl).

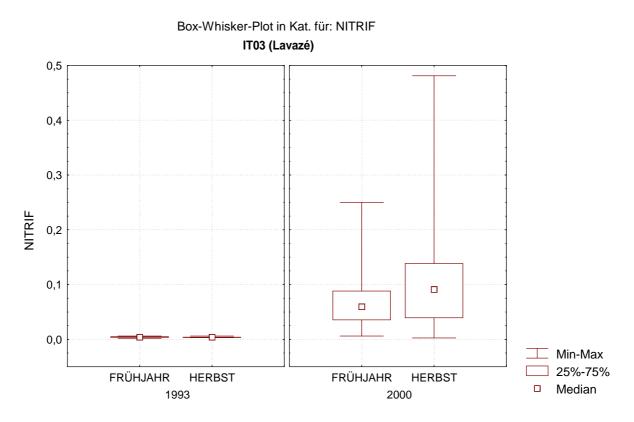


Abb. 30: Einfluss des Untersuchungsjahres und der Jahreszeit auf den Nitrifikationsumsatz (NITRIF) der Beobachtungsfläche IT03 (Lavazè).

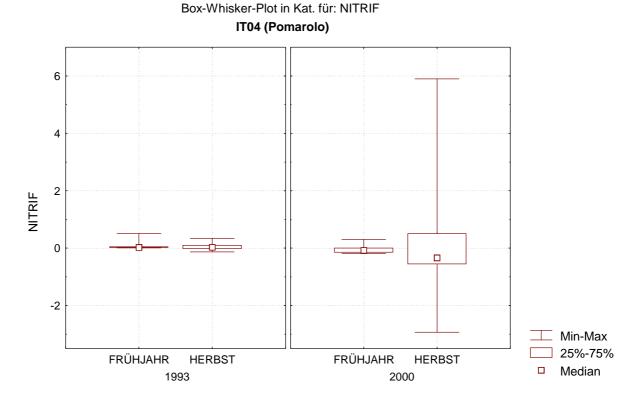


Abb. 31: Einfluss des Untersuchungsjahres und der Jahreszeit auf den Nitrifikationsumsatz (NITRIF) der Beobachtungsfläche IT04 (Pomarolo).

Die Nitrifikation, die Oxidation von Ammoniumstickstoff über die Zwischenstufe Nitrit zu Nitrat, erfolgt in nennenswertem Ausmaß durch Nitrifikanten. Optimale Umsatzleistungen sind an einen neutralen pH-Wert und eine gute Belüftung des Bodens gebunden. Die Nitrifikation unter sauren Bedingungen ist bekannt, aber quantitativ von geringer Bedeutung. Die in vorliegender Untersuchung erhaltenen Ergebnisse bestätigen obige Aussage. Im Boden von Pomarolo konnten infolge günstigerer pH-Bedingungen nennenswerte Nitrifikationsumsätze gemessen werden, während im Boden von Montiggl eher geringe und in den Böden von Ritten und Lavazè nahezu kein Nitrifikationsumsatz nachgewiesen werden konnte. Der geringfügige Nitrifikationsanstieg am Standort Lavazè zwischen 1993 und 2000 kann vorerst nicht interpretiert werden, Folgeuntersuchungen müssten diesen Trend erst bestätigen.

3.7 N-Mineralisationsrate

3.7.1 Übersicht aller Effekte

Dieser Parameter wurde nur im Jahr 2000 bestimmt, ein Vergleich zwischen den Untersuchungsjahren konnte daher nicht erfolgen.

Die N-Mineralisationsrate war im Frühjahr 2000 signifikant höher als im Herbst. Ein genereller signifikanter Unterschied zwischen der N-Mineralisationsrate in den vier Beobachtungsflächen konnte nicht erkannt werden, die Aktivität war jedoch in der Fläche IT02 (Montiggl; 5,95 μ g N/(g OS * Tag)) signifikant höher als in der Fläche IT01 (Ritten; 9,71 μ g N/(g OS * Tag)) (Tab. 4, Abb. 32). Die statistische Auswertung bestätigt somit die geringe Umsatzleistung im Stickstoffkreislauf an den beiden klimatisch benachteiligten Standorten.

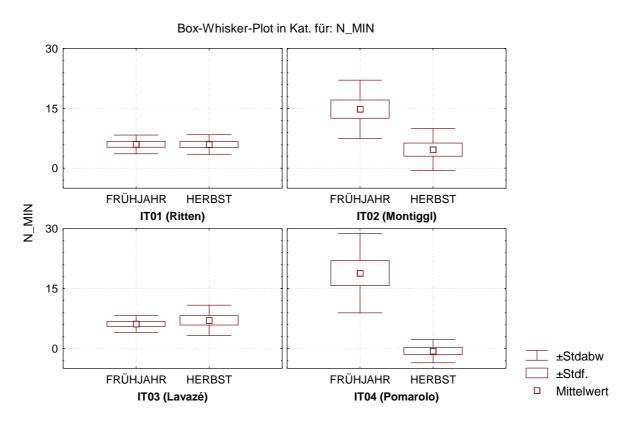


Abb. 32: Einfluss des Untersuchungsjahres und der Jahreszeit auf die N-Mineralisationsrate.

3.7.2 Standortspezifische Effekte

Die N-Mineralisationsrate im Frühjahr war nicht signifikant unterschiedlich von jeder im Herbst, dies galt für jede der vier Beobachtungsflächen (Tab. 5, Abb. 32).

Nach dem ICP-IM Manual (1998) sollte die N-Mineralisation nach 0, 3, 5 und 7 Wochen bestimmt werden. Wir bestimmten diesen Parameter nur nach 0 und 4 Wochen, da der zeitliche Verlauf der N-Mineralisation den meisten Fällen innerhalb dieser Inkubationszeit linear ist. Die deskriptive Statistik des Parameters N-Mineralisationsrate ist in Tab. 10 zusammengefasst.

Tab. 10: Deskriptive Statistik der Parameter Nitrifikationsumsatz (NITRIF) und N-Mineralisationsrate (N-MIN) in den vier Dauerbeobachtungsflächen in den Jahren 1993 und 2000.

										Standard-	Quartils-
Parameter	Fläche)	Jahr	J.zeit	N	Mittelw.	Median	Minimum	Maximum	abw.	abstand
NUTDIE	ITO4	_	4000	_	40	0.005	0.004	0.044	0.000	0.000	0.044
NITRIF	IT01	R	1993	F	10	0,005	0,004	-0,041	0,033	0,020	0,011
NITRIF	IT01	R	1993	H	10	0,004	0,003	-0,030	0,036	0,017	0,004
NITRIF	IT01	R	2000	F	10	0,038	0,137	-0,422	0,258	0,218	0,282
NITRIF	IT01	R	2000	Н	10	0,723	0,415	-0,017	4,362	1,293	0,288
NITRIF	IT02	М	1993	F	10	0,058	0,060	0,007	0,119	0,045	0,084
NITRIF	IT02	M	1993	Н	10	0,063	0,016	-0,023	0,531	0,165	0,020
NITRIF	IT02	М	2000	F	10	0,194	-0,024	-0,198	2,366	0,767	0,170
NITRIF	IT02	М	2000	Н	10	1,430	-0,026	-0,703	15,649	5,002	0,204
NITRIF	IT03	L	1993	F	10	0.004	0.004	0,002	0,006	0,001	0,002
NITRIF	IT03	Ĺ	1993	H	10	0,004	0,004	0,003	0,006	0,001	0,001
NITRIF	IT03	Ĺ	2000	F	10	0,078	0,060	0,006	0,250	0,071	0,053
NITRIF	IT03	Ĺ	2000	H	10	0,120	0,091	0,002	0,481	0,136	0,099
- Tarrian	1100	_	2000	••	10	0,120	0,001	0,002	0,401	0,100	0,000
NITRIF	IT04	Ρ	1993	F	10	0,115	0,024	0,006	0,503	0,192	0,030
NITRIF	IT04	Р	1993	Н	10	0,048	0,031	-0,133	0,341	0,128	0,123
NITRIF	IT04	Р	2000	F	10	-0,052	-0,080	-0,186	0,300	0,144	0,150
NITRIF	IT04	Р	2000	Н	10	0,093	-0,341	-2,932	5,896	2,416	1,060
N-MIN	IT01	R	2000	F	10	5,96	5,93	1,64	9,03	2,352	3,166
N-MIN	IT01	R	2000	Н	10	5,94	5,86	1,49	9,68	2,448	3,068
N-MIN	IT02	М	2000	F	10	14,78	15,40	1,95	24,99	7,300	11,374
N-MIN	IT02	M	2000	H	10	4,65	4,29	-0,26	17,10	5,253	5,964
I VIII V	1102		2000	••	10	4,00	4,20	0,20	17,10	0,200	0,004
N-MIN	IT03	L	2000	F	10	6,11	5,83	2,99	10,57	2,112	2,510
N-MIN	IT03	L	2000	Н	10	7,02	7,25	1,88	13,61	3,795	5,428
N-MIN	IT04	Р	2000	F	10	18,85	20,89	5,63	31,53	9,957	19,137
N-MIN	IT04	Р	2000	H	10	-0,67	-1,45	-3,77	4,10	2,919	4,379

3.8 Saure Phosphataseaktivität

Für eine internationale Standardisierung ist die Bestimmung der sauren Phosphataseaktivität nach dem ICP-IM Manual (1998) vorgesehen. Da jedoch die Bestimmung dieser Aktivität im Jahre 1993 nach einer anderen Methode (Tabatabai und Bremner 1969) vorgenommen worden war, mussten die 1993 gemessenen Werte konvertiert werden. Die Konversion der Daten erfolgte anhand der Berechnung der Korrelation zwischen der Phosphataseaktivität, gemessen in sämtlichen Bodenproben des Jahres 2000 nach Tabatabai und Bremner (1969) und nach dem ICP-IM Manual (1998). Es konnte eine signifikante Korrelation (p=0,0000; n=80; Pearson-Produkt-Moment-Korrelation für normalverteilte Daten) festgestellt werden (Abb. 33).

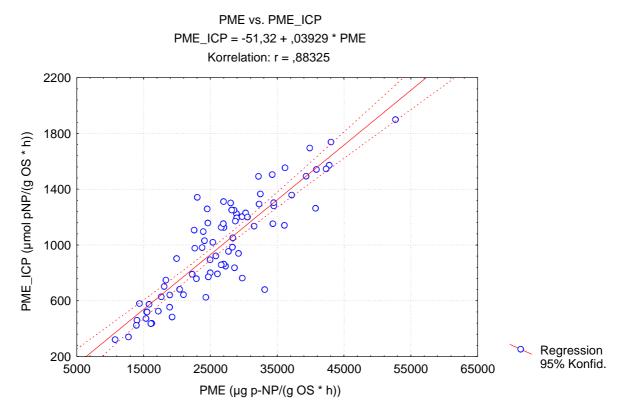


Abb.33: Korrelation der Methoden zur Bestimmung der sauren Phosphataseaktivität nach Tabatabai und Bremner (1969) (PME) und nach dem ICP-IM Manual (1998) (PME-ICP).

Da die beiden Bestimmungsmethoden sich in mehreren Punkten unterscheiden, erfolgten die statistischen Berechnungen für beide Bestimmungsmethoden (Tab. 4-5, 11). Nach der ICP-Methode muss der Boden vor Bestimmung der Enzymaktivität 2 Monate bei 4°C präinkubiert

werden. Auch die pNP-Freisetzung wird unter anderen Ausgangsbedingungen gemessen: der Boden wird mit dem Substrat 2 Stunden bei 25°C und pH 5 (die Molarität des Puffers ist nicht vorgegeben) inkubiert, während nach der 1993 verwendeten Methode eine Inkubation von 1 Stunde bei 37°C und pH 6,5 zu erfolgen hat.

3.8.1 Übersicht aller Effekte

Wurde die Phosphataseaktivität nach Tabatabai und Bremner (1969) durchgeführt (PME), zeigte sich, dass sowohl die vier Beobachtungsflächen als auch die beiden Untersuchungsjahre, jedoch nicht die Jahreszeit einen signifikanten Einfluss auf die gemessene Aktivität hatten. Dieses ANOVA-Ergebnis wurde von der Kruskal-Wallis-ANOVA für nicht parametrische Daten bestätigt. Demnach war die Aktivität 1993 geringer als 2000. Ebenso signifikant war eine Vielzahl von Kombinationen dieser Effekte (Tab. 4).

Wurde hingegen die Phosphataseaktivität nach dem ICP-Manual (1998) bestimmt (PME-ICP), hatten nicht nur die Beobachtungsflächen und die Untersuchungsjahre, sondern auch die Jahreszeit einen signifikanten Einfluss auf die Aktivität. Demnach war die Aktivität 1993 geringer als 2000, und im Frühjahr niedriger als im Herbst. Der Kruska-Wallis-ANOVA zufolge waren nur Untersuchungsjahr und Jahreszeit von signifikanter Bedeutung, der Median-Test erkannte nur einen signifikanten Einfluss des Untersuchungsjahres (Tab. 4, Abb. 34).

Unabhängig von der Bestimmungsmethode war die Phosphataseaktivität in der Fläche IT03 (Lavazè) am geringsten, die Aktivität in den drei anderen Flächen war signifikant höher, aber es bestand kein Unterschied zwischen diesen Flächen (Tab. 4, Abb. 34).

3.8.2 Standortspezifische Effekte

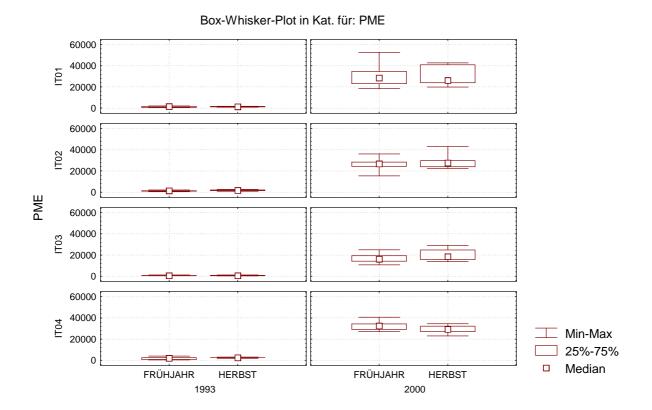
IT01 (Ritten)

Nach beiden Bestimmungsmethoden war die Phosphataseaktivität in dieser Beobachtungsfläche im Jahr 2000 signifikant höher als im Jahr 1993, während die Jahreszeit keinen Einfluss hatte. Dieses ANOVA-Ergebnis wurde durch beide Testverfahren für nicht-parametrische Methoden bestätigt. Auch eine Kombination beider Effekte war signifikant bedeutsam (Tab. 5, Abb. 35).

IT02 (Montiggl)

Nach beiden Bestimmungsmethoden war die Phosphataseaktivität im Jahr 1993 signifikant geringer als im Jahr 2000. Die Jahreszeit hatte nur nach der ICP-Methode einen signifikanten

Einfluss (die Aktivität war demnach 1993 im Frühjahr signifikant geringer als im Herbst), dieser konnte jedoch durch die Tests für nicht parametrische Daten nicht bestätigt werden. Auch die Kombination beider Effekte war nur nach der ICP-Methode signifikant bedeutsam (Tab. 5, Abb. 36).


IT03 (Lavazè)

Für diese Beobachtungsfläche wurde bei Bestimmung der Aktivität nach der 1993 verwendeten Methode exakt dasselbe Ergebnis wie für die Fläche IT01 (Ritten) erzielt. Die Bestimmung der Aktivität nach der ICP-Methode zeigte auch einen signifikanten Einfluss der Jahreszeit auf, dieser konnte jedoch durch die Tests für nicht parametrische Daten nicht bestätigt werden (Tab. 5, Abb. 37).

IT04 (Pomarolo)

Auch in dieser Fläche war die Enzymaktivität, unabhängig von der Bestimmungsmethode, im Jahr 2000 signifikant höher als im Jahr 1993, während die Jahreszeit keinen Einfluss hatte. Dieses ANOVA-Ergebnis wurde durch beide Testverfahren für nicht-parametrische Methoden bestätigt (Tab. 5, Abb. 38).

Die saure Phosphatase steht als Zeigerenzym für die Mobilisierung von Phosphor aus komplex gebundenem nicht pflanzenverfügbarem Phosphor. Ein Charakteristikum dieser Enzymaktivität ist eine verkehrt proportionale Reaktion auf die Menge verfügbaren Phosphors im Boden. Hohe Aktivitäten weisen somit auf einen hohen Mobilisierungsbedarf bei niedriger Phosphorverfügbarkeit hin. Der Anstieg der Phosphataseaktivität im Jahr 2000 bestätigt den bei anderen Enzymaktivitäten beobachteten Trend einer Verschlechterung der mikrobiellen Stoffwechselleistungen und damit geringeren Verfügbarkeit von Nährstoffen. Ein Vergleich mit Messdaten von Biomassebestimmungen an Pflanzen und Bodentieren könnte diese Aussage bestätigen.

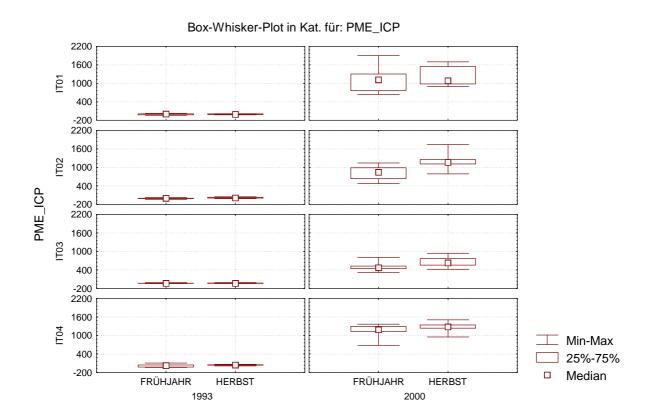
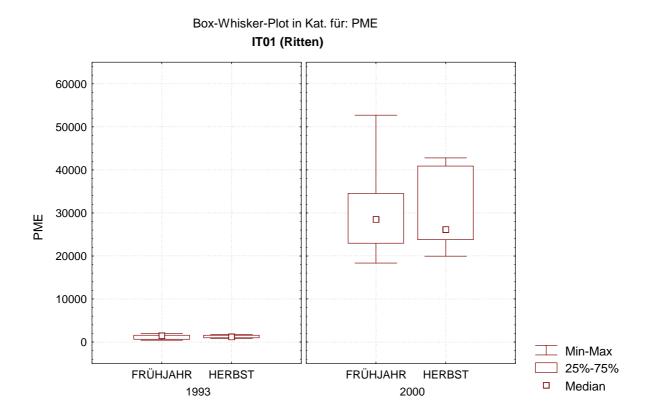



Abb. 34: Einfluss der Beobachtungsflächen, des Untersuchungsjahres und der Jahreszeit auf die saure Phosphataseaktivität, bestimmt nach Tabatabai und Bremner (PME) und nach dem ICP-IM Manual (PME-ICP).

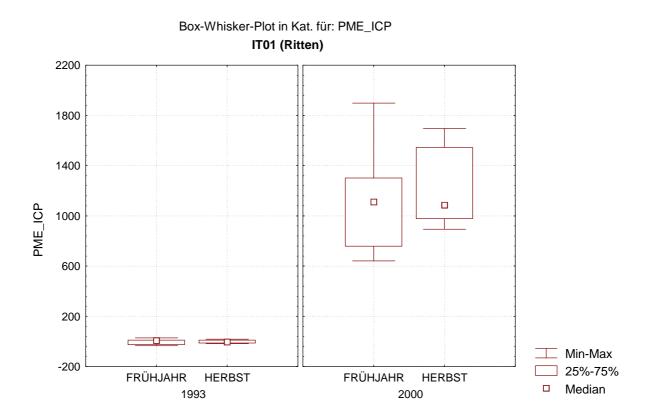
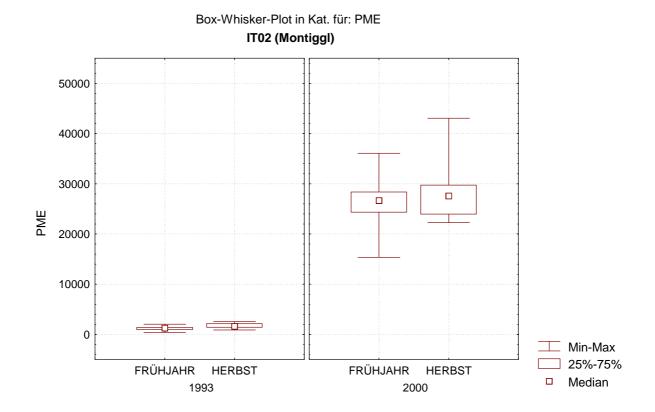



Abb. 35: Einfluss des Untersuchungsjahres und der Jahreszeit auf die saure Phosphatase-aktivität der Beobachtungsfläche IT01 (Ritten), bestimmt nach Tabatabai und Bremner (PME) und nach dem ICP-IM Manual (PME-ICP).

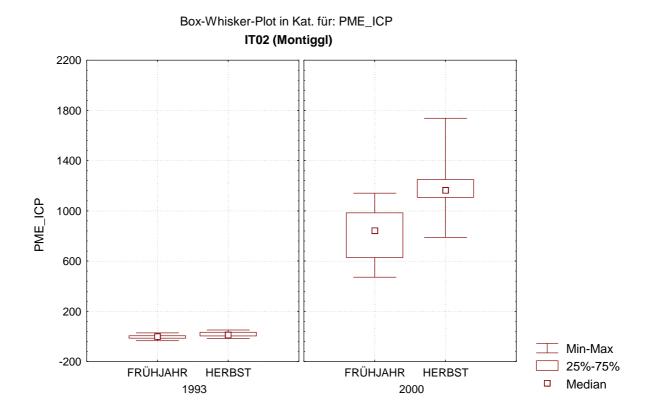
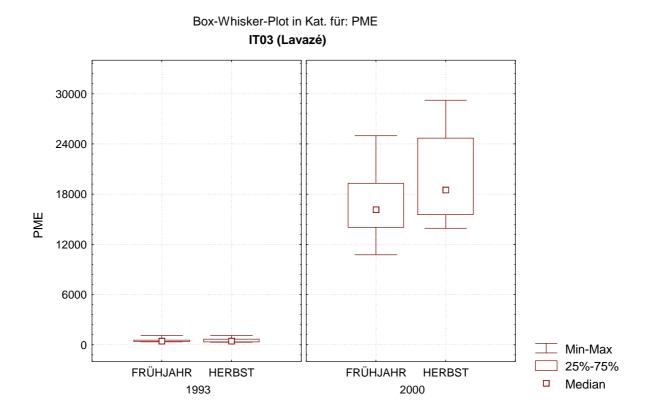



Abb. 36: Einfluss des Untersuchungsjahres und der Jahreszeit auf die saure Phosphatase-aktivität der Beobachtungsfläche IT02 (Montiggl), bestimmt nach Tabatabai und Bremner (PME) und nach dem ICP-IM Manual (PME-ICP).

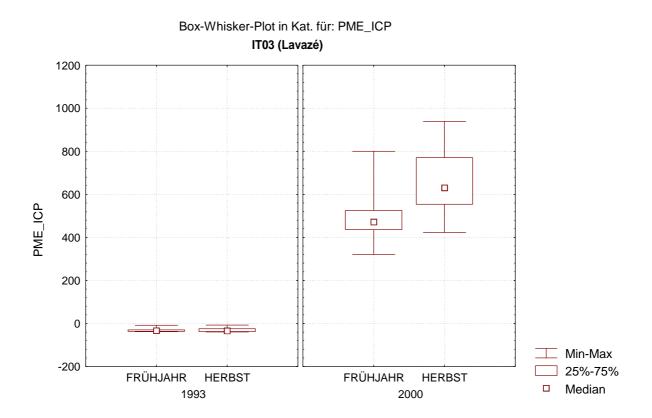


Abb. 37: Einfluss des Untersuchungsjahres und der Jahreszeit auf die saure Phosphatase-aktivität der Beobachtungsfläche IT03 (Lavazè), bestimmt nach Tabatabai und Bremner (PME) und nach dem ICP-IM Manual (PME-ICP).

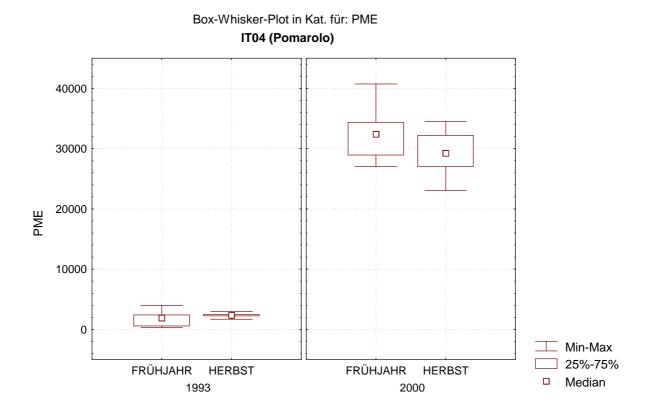


Abb. 38: Einfluss des Untersuchungsjahres und der Jahreszeit auf die saure Phosphatase-aktivität der Beobachtungsfläche IT04 (Pomarolo), bestimmt nach Tabatabai und Bremner (PME) und nach dem ICP-IM Manual (PME-ICP).

Tab. 11: Deskriptive Statistik des Parameters saure Phosphataseaktivität, bestimmt nach Tabatabai und Bremner (PME) und nach dem ICP-IM Manual (PME-ICP), in den vier Dauerbeobachtungsflächen in den Jahren 1993 und 2000.

Parameter	Fläsh		Jahr	J.zeit	N	Mittalur	Median	Minimum	Maximum	Standard-	Quartils-
Parameter	riache		Jani	J.Zeit	IN	Mittelw.	Wedian	wiinimum	Maximum	abw.	abstand
PME	IT01	R	1993	F	10	1201.00	1470,00	430,00	2030.00	580.143	980,000
PME	IT01	R	1993	Н	10	1257,00	1210,00	840,00	1760,00	319,654	640,000
PME	IT01	R	2000	F	10	29765,25	28489,42	18359,18	52718,01	10387,434	11600,390
PME	IT01	R	2000	Н	10	30956,07	26163,53	19961,63	42794,07	9263,215	17113,781
PME	IT02	М	1993	F	10	1185,00	1265,00	420,00	2030,00	448,708	500,000
PME	IT02	М	1993	Н	10	1695,00	1605,00	900,00	2590,00	502,068	750,000
PME	IT02	М	2000	F	10	25792,03	26678,16	15364,89	36082,95	5833,833	4031,729
PME	IT02	М	2000	Н	10	28632,70	27582,30	22281,96	43068,21	6548,349	5826,521
PME	IT03	L	1993	F	10	512,00	445,00	350,00	1090,00	219,383	190,000
PME	IT03	L	1993	Н	10	532,00	440,00	300,00	1110,00	262,204	340,000
PME	IT03	L	2000	F	10	16778,96	16156,13	10760,81	24989,57	4138,162	5269,978
PME	IT03	L	2000	Н	10	19765,87	18499,23	13934,15	29223,20	5384,973	9165,619
PME	IT04	Р	1993	F	10	1793,00	1890,00	330,00	3990,00	1162,574	1860,000
PME	IT04	Ρ	1993	Н	10	2322,00	2355,00	1690,00	2980,00	356,489	270,000
PME	IT04	Р	2000	F	10	32474,36	32395,62	27024,31	40741,27	4312,711	5452,682
PME	IT04	Р	2000	Н	10	29227,83	29243,76	23042,22	34490,92	3852,107	5225,142
DME IOD	ITO4		4000	_	40	4.40	0.44	04.40	00.44	00.704	00.504
PME-ICP	IT01	R	1993	F	10	-4,13	6,44	-34,43	28,44	22,794	38,504
PME-ICP	IT01	R	1993	Н	10	-1,93	-3,78	-18,32	17,83	12,559	25,146
PME-ICP	IT01	R	2000	F H	10	1110,45	1111,91	641,42	1898,65	400,479	543,842
PME-ICP	IT01	R	2000	п	10	1227,80	1085,72	893,58	1695,16	321,010	569,330
PME-ICP	IT02	M	1993	F	10	-4,76	-1,62	-34,82	28,44	17,630	19,645
PME-ICP	IT02	M	1993	Н	10	15,28	11,74	-15,96	50,44	19,726	29,468
PME-ICP	IT02	M	2000	F	10	829,72	842,31	472,34	1140,45	208,248	356,349
PME-ICP	IT02	М	2000	Н	10	1218,79	1163,99	789,35	1737,93	260,243	143,378
PME-ICP	IT03	L	1993	F	10	-31,20	-33,84	-37,57	-8,49	8,620	7,465
PME-ICP	IT03	L	1993	Н	10	-30,42	-34,03	-39,53	-7,71	10,302	13,359
PME-ICP	IT03	L	2000	F	10	496,41	471,52	320,60	800,20	141,131	89,659
PME-ICP	IT03	L	2000	Н	10	659,86	630,25	423,19	938,74	160,778	217,521
PME-ICP	IT04	Р	1993	F	10	19,13	22,94	-38,35	105,45	45,678	73,079
PME-ICP	IT04	Р	1993	Н	10	39,91	41,21	15,08	65,76	14,006	10,608
PME-ICP	IT04	Р	2000	F	10	1145,60	1187,97	680,02	1365,27	219,246	168,303
PME-ICP	IT04	Ρ	2000	Н	10	1284,19	1280,67	953,09	1504,35	155,462	111,851

3.9 Sulfataseaktivität

3.9.1 Übersicht aller Effekte

Sowohl die Beobachtungsfläche als auch das Untersuchungsjahr beeinflussten die Sulfataseaktivität in signifikantem Ausmaß. Die Aktivität war 2000 im Vergleich zu 1993 deutlich angestiegen. Die höchste Aktivität war in den Flächen IT04 (Pomarolo; Mittelwert 3810 μ g pNP/(g OS * h)) und IT02 (Montiggl; 1190 μ g pNP/(g OS * h)) zu beobachten (wobei die Aktivität in IT04 signifikant höher war als in IT02), die signifikant geringste Aktivität wiesen die anderen zwei Flächen auf (390-684 μ g pNP/(g OS * h). Die Jahreszeit dagen beeinflusste die Sulfataseaktivität nicht signifikant. Dieses ANOVA-Ergebnis wurde durch beide Tests für nicht parametrische Daten bestätigt (Tab. 4, Abb. 39).

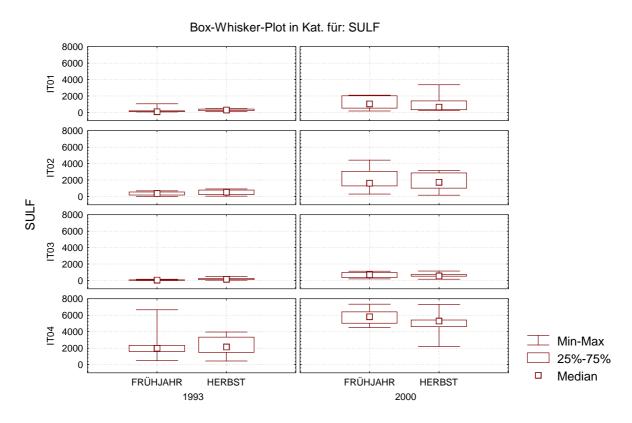


Abb. 39: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Sulfataseaktivität (SULF).

3.9.2 Standortspezifische Effekte

Jede der vier Beobachtungsflächen wies 1993 eine signifikant geringere Sulfataseaktivität auf als 2000. Eine Abhängigkeit der Sulfataseaktivität von der Jahreszeit konnte in keiner Fläche festgestellt werden. Zu diesem Ergebnis kamen alle drei Testverfahren (Tab. 5, Abb. 40-43). Die deskriptive Statistik des Parameters Sulfataseaktivität ist in Tab. 12 zusammengefasst.

Mikrobielle Sulfatasen mobilisieren organisch gebundenen Schwefel, machen ihn pflanzenverfügbar und sind somit wie andere Bodenenzyme an der Mineralisation der Streu beteiligt. Auch dieses Bodenenzym zeigte im Vergleich der Untersuchungsjahre 1993 und 2000 ähnliche Reaktionen wie die saure Phosphataseaktivität, womit auf einen vergleichbaren Regelmechanismus geschlossen werden kann. Im Vergleich der Standorte erkennt man eine deutlich höhere Sulfataseaktivität in den klimatisch begünstigten Standorten IT02 (Montiggl) und IT04 (Pomarolo).

Tab. 12: Deskriptive Statistik des Parameters Sulfataseaktivität (SULF) in den vier Dauerbeobachtungsflächen in den Jahren 1993 und 2000.

										Standard-	Quartils-
Parameter	Fläche		Jahr	J.zeit	N	Mittelw.	Median	Minimum	Maximum	abw.	abstand
SULF	IT01	R	1993	F	10	230,00	95,00	70,00	1050,00	307,137	120,000
SULF	IT01	R	1993	Н	10	304,00	310,00	130,00	470,00	123,306	210,000
SULF	IT01	R	2000	F	10	1142,86	1041,81	167,25	2101,63	708,543	1539,888
SULF	IT01	R	2000	Н	10	1061,54	656,06	263,63	3378,65	1008,940	1112,102
SULF	IT02	M	1993	F	10	377,00	380,00	20,00	680,00	220,204	380,000
SULF	IT02	M	1993	Н	10	498,00	535,00	50,00	910,00	298,247	560,000
SULF	IT02	M	2000	F	10	2112,33	1624,66	305,92	4410,86	1235,892	1788,202
SULF	IT02	M	2000	Н	10	1775,14	1727,29	152,61	3154,95	1010,519	1867,597
SULF	IT03	1	1993	F	10	63,00	60,00	20,00	160,00	44.981	60,000
SULF	IT03	ī	1993	H	10	206,00	155,00	50,00	520,00	161,741	180,000
SULF	IT03	ī	2000	F	10	688,10	714,44	212,04	1140,97	319,254	627,462
SULF	IT03	Ĺ	2000	Н	10	604,17	572,07	162,53	1154,73	293,328	208,773
						,	•	,	,	•	,
SULF	IT04	Р	1993	F	10	2275,00	1980,00	470,00	6660,00	1745,523	790,000
SULF	IT04	Р	1993	Н	10	2231,00	2155,00	430,00	3960,00	1219,275	1870,000
SULF	IT04	Р	2000	F	10	5749,11	5826,01	4505,34	7339,00	926,609	1380,333
SULF	IT04	Р	2000	Н	10	4984,16	5302,99	2204,05	7330,27	1509,567	815,740

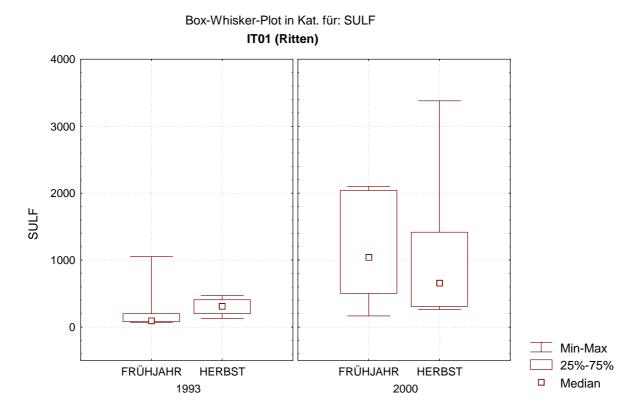


Abb. 40: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Sulfataseaktivität (SULF) der Beobachtungsfläche IT01 (Ritten).

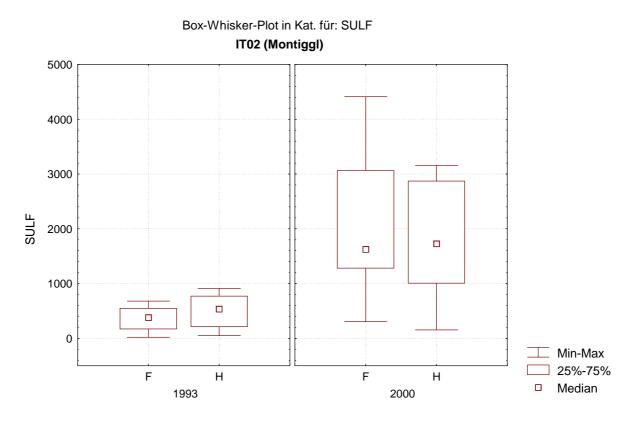


Abb. 41: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Sulfataseaktivität (SULF) der Beobachtungsfläche IT02 (Montiggl).

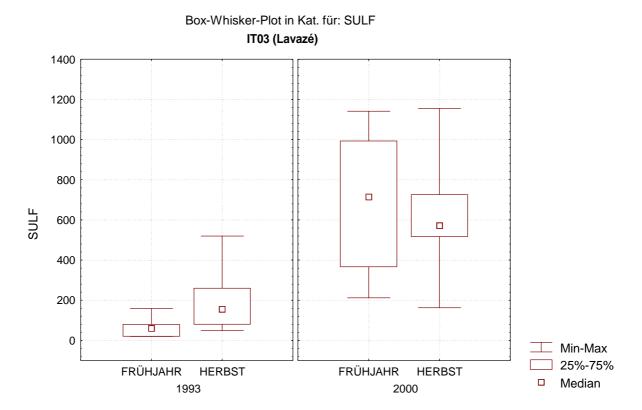


Abb. 42: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Sulfataseaktivität (SULF) der Beobachtungsfläche IT03 (Lavazè).

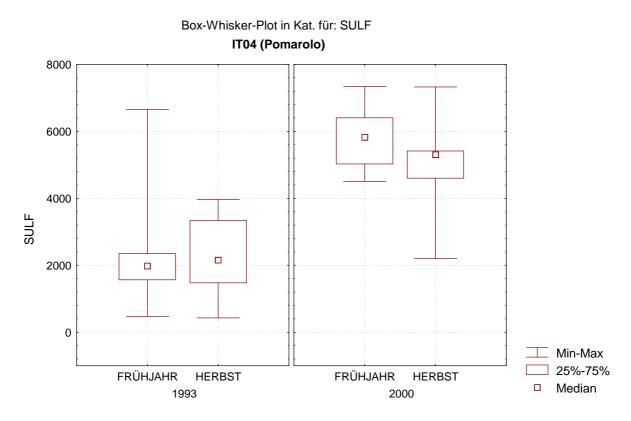


Abb. 43: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Sulfataseaktivität (SULF) der Beobachtungsfläche IT04 (Pomarolo).

3.10 Gesamtkeimzahl Bakterien

3.10.1 Übersicht aller Effekte

Die Gesamtkeimzahl an Bakterien war in den Beobachtungsflächen IT03 (Lavazè; Mittelwert 1,2x10⁶ cfu/g OS) und IT01 (Ritten; 3,9x10⁶ cfu/g OS) signifikant geringer als in den beiden anderen Flächen, wobei die Fläche IT04 (Pomarolo; 1,2x10⁸ cfu/g OS) signifikant höhere Keimzahlen als die Fläche IT02 (Montiggl; 3,9x10⁷ cfu/g OS) aufwies. Dieses Ergebnis zeigten alle drei Testverfahren (Tab. 4, Abb. 44).

Die 1993 gefundenen Keimzahlen unterschieden sich nicht signifikant von denen im Jahr 2000. Dieses ANOVA-Ergebnis wurde nur durch die Kruskal-Wallis-ANOVA bestätigt, jedoch nicht durch den Median-Test. Signifikant höhere Keimzahlen im Frühjahr als im Herbst wurden nur mit dem ANOVA-Test aufgezeigt, jedoch nicht mit den beiden Testverfahren für nicht parametrische Daten. Dem ANOVA-Test zufolge hatten auch alle Kombinationen der Effekte Beobachtungsfläche, Untersuchungsjahr und Jahreszeit, mit Ausnahme der Kombination aller drei Effekte gleichzeitig, einen signifikanten Einfluss auf die Gesamtkeimzahl an Bakterien (Tab. 4, Abb. 44).

3.10.2 Standortspezifische Effekte

Dem ANOVA-Test zufolge war die Gesamtkeimzahl an Bakterien nur in der Fläche IT03 (Lavazè) im Jahr 1993 signifikant geringer als im Jahr 2000; in den anderen drei Flächen war kein Unterschied zwischen den Untersuchungsjahren zu erkennen. Die beiden Tests für nicht parametrische Daten lieferten ein anderes Ergebnis. Der Kruskal-Wallis-ANOVA zufolge war die Gesamtkeimzahl an Bakterien in allen Flächen, außer in IT04 (Pomarolo), 1993 signifikant geringer als 2000, während nach dem Median-Test dies nur für die Flächen IT02 (Montiggl) und IT03 (Lavazè) erkannt wurde (Tab. 5, Abb. 45-48).

Der Einfluss der Jahreszeit war nur in den Flächen IT01 (Ritten) und IT04 (Pomarolo) von signifikanter Bedeutung, wobei die Keimzahlen im Frühjahr höher waren als im Herbst. Dieses Ergebnis erbrachten beide ANOVA-Tests für normalverteilte und nicht parametrische Daten, jedoch nicht der Median-Test, der den beschriebenen Effekt nur in IT04 (Pomarolo) erkannte (Tab. 5, Abb. 45-48).

Die deskriptive Statistik zu den Bakterienkeimzahlen ist in Tab. 13 zusammengefasst.

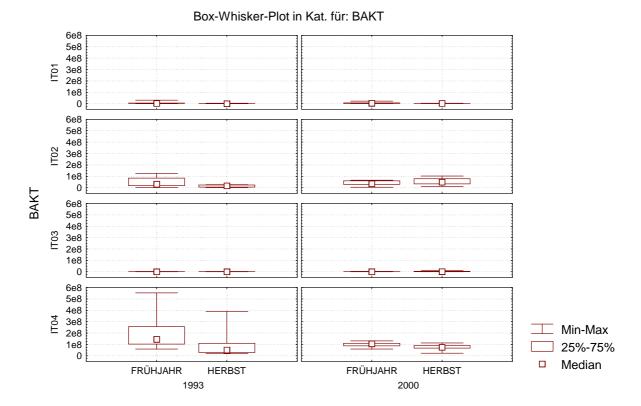


Abb. 44: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Gesamtkeimzahl an Bakterien (BAKT).

Die Bestimmung der Gesamtkeimzahl an Bakterien erlaubt methodenbedingt quantitative Aussagen über jene heterotrophen Bakterien, die unter den Bedingungen des gewählten Nährmediums wachsen können. Bekannterweise ist dies nur ein sehr kleiner Anteil der in Böden vorkommenden Bakterien. Entsprechend den für Bakterien ungünstigen Nährstoff- und pH-Bedingungen war die Keimzahl der Böden an den Standorten IT01 (Ritten) und IT03 (Lavazè) sehr gering. Böden der Standorte IT02 (Montiggl) und vor allem IT04 (Pomarolo) ermöglichten ein viel besseres Bakterienwachstum. Bemerkenswerterweise waren im Gegensatz zu Enzymaktivitäten die Keimzahlen in den Jahren 1993 und 2000 (außer am Standort IT03) nicht wesentlich verschieden.

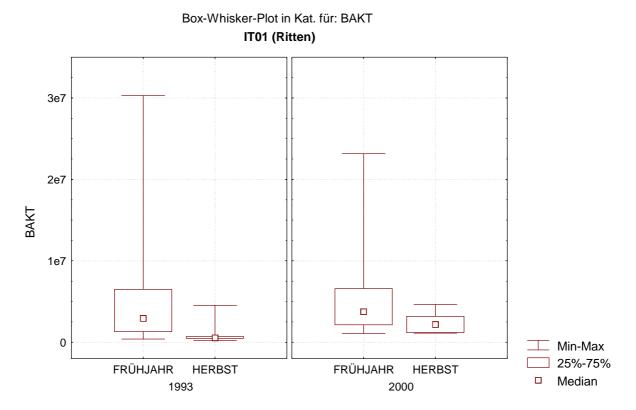


Abb. 45: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Gesamtkeimzahl an Bakterien (BAKT) der Beobachtungsfläche IT01 (Ritten).

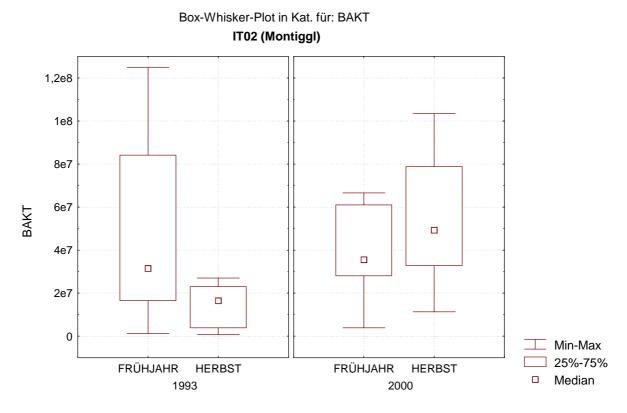


Abb. 46: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Gesamtkeimzahl an Bakterien (BAKT) der Beobachtungsfläche IT02 (Montiggl).

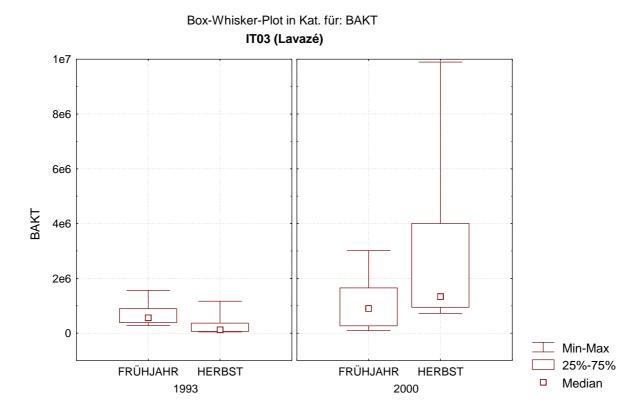


Abb. 47: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Gesamtkeimzahl an Bakterien (BAKT) der Beobachtungsfläche IT03 (Lavazè).

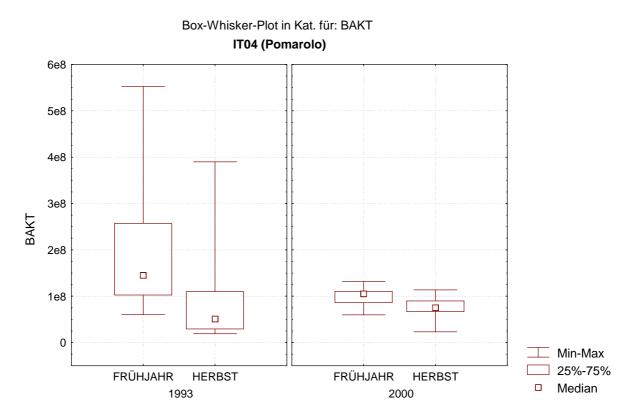


Abb. 48: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Gesamtkeimzahl an Bakterien (BAKT) der Beobachtungsfläche IT04 (Pomarolo).

3.11 Gesamtkeimzahl Pilze

3.11.1 Übersicht aller Effekte

Analog zur Gesamtkeimzahl an Bakterien konnte auch für die Gesamtkeimzahl an Pilzen ein signifikanter Einfluss der Beobachtungsflächen erkannt werden. Die Gesamtkeimzahl an Pilzen war in den Flächen IT03 (Lavazè; Mittelwert 1,1x10⁵ cfu/g OS) und IT01 (Ritten; 4,2x10⁵ cfu/g OS) signifikant geringer als in den beiden anderen Flächen, wobei die Fläche IT04 (Pomarolo; 2,8x10⁷ cfu/g OS) signifikant höhere Keimzahlen als die Fläche IT02 (Montiggl; 6,8x10⁷ cfu/g OS) aufwies. Dieses Ergebnis zeigten alle drei Testverfahren (Tab. 4, Abb. 49).

Im Unterschied zur Gesamtkeimzahl an Bakterien wurde die Gesamtkeimzahl an Pilzen nicht von der Jahreszeit, aber vom Untersuchungsjahr beinflusst, wobei die Keimzahlen 1993 signifikant höher waren als 2000. Dieses ANOVA-Ergebnis wurde durch die Kruskal-Wallis-ANOVA für nicht parametrische Daten bestätigt; nur der Median-Test zeigte keinen signifikanten Einfluss des Untersuchungsjahres auf (Tab. 4, Abb. 49).

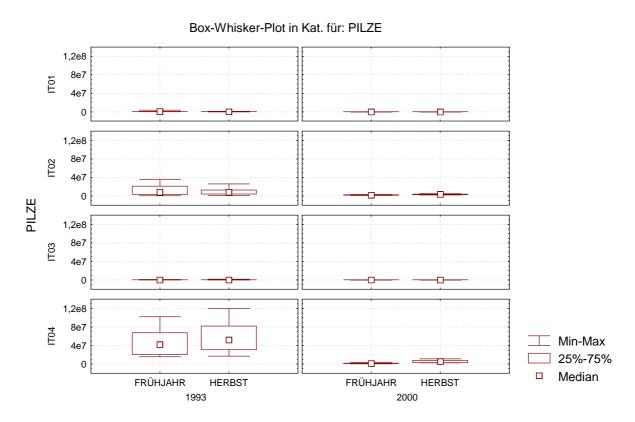


Abb. 49: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Gesamtkeimzahl an Pilzen (PILZE).

3.11.2 Standortspezifische Effekte

In allen vier Beobachtungsflächen war die Keimzahl an Pilzen im Jahr 1993 signifikant höher als 2000. Zu diesem Ergebnis kammen alle drei Testverfahren.

Ein signifikanter Einfluss der Jahreszeit, sowie der Kombination der Effekte Untersuchungsjahr und Jahreszeit, lag nach dem ANOVA-Test nur in der Fläche IT01 (Ritten) vor, hierbei
waren die Keimzahlen im Frühjahr höher als im Herbst. Beide Tests für nicht parametrische
Daten ergaben jedoch, dass die Jahreszeit in keiner der vier Flächen einen signifikanten
Einfluss auf die Gesamtkeimzahl an Pilzen hatte (Tab. 5, Abb. 50-53). Die deskriptive
Statistik zu den Pilzkeimzahlen ist in Tab. 13 zusammengefasst.

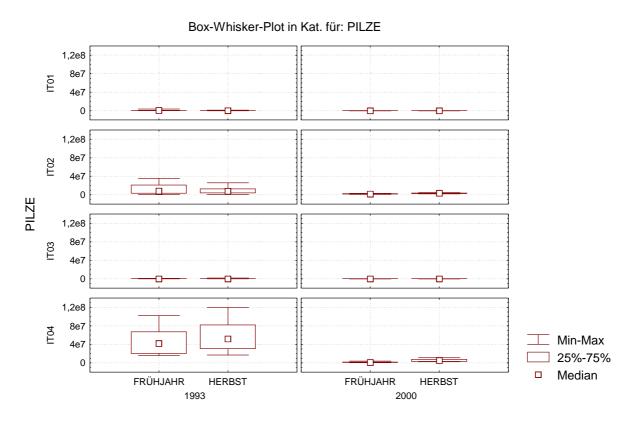


Abb. 50: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Gesamtkeimzahl an Pilzen (PILZE) der Beobachtungsfläche IT01 (Ritten).

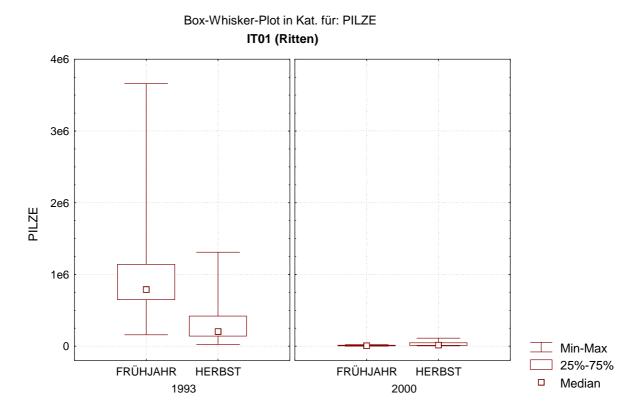


Abb. 51: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Gesamtkeimzahl an Pilzen (PILZE) der Beobachtungsfläche IT02 (Montiggl).

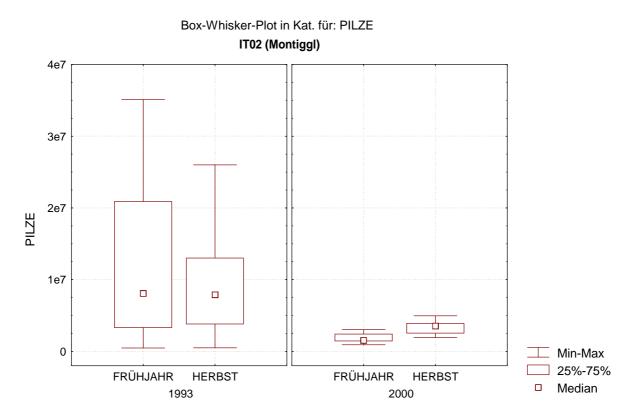


Abb. 52: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Gesamtkeimzahl an Pilzen (PILZE) der Beobachtungsfläche IT03 (Lavazè).

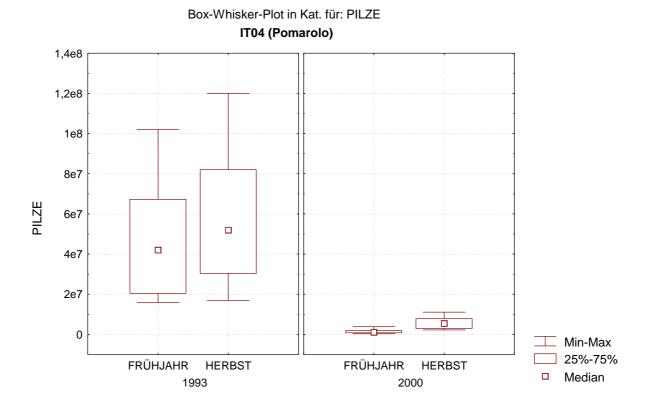


Abb. 53: Einfluss des Untersuchungsjahres und der Jahreszeit auf die Gesamtkeimzahl an Pilzen (PILZE) der Beobachtungsfläche IT04 (Pomarolo).

Die Bestimmung der Gesamtkeimzahl an Pilzen erlaubt methodenbedingt quantitative Aussagen über jene Pilze, die unter den Bedingungen des gewählten Nährmediums wachsen können. Bekannterweise ist dies nur ein sehr kleiner Anteil der in Böden vorkommenden Pilze. Vor allem Basidiomyceten waren unter den gewählten Untersuchungsbedingungen benachteiligt. Ungünstige bodenkundliche Voraussetzungen in den Böden der Standorte IT01 (Ritten) und IT03 (Lavazè) erlaubten für die kultivierbaren Pilze nur ein geringes Pilzwachstum als vergleichsweise an den Standorten IT02 (Montiggl) und IT04 (Pomarolo). Jahreszeitliche Unterschiede waren nur geringfügig.

Tab. 13: Deskriptive Statistik der Gesamtkeimzahlen an Bakterien (BAKT) und Pilzen (PILZE) in den vier Dauerbeobachtungsflächen in den Jahren 1993 und 2000.

										Standard-	Quartils-
Parameter	Fläche	9	Jahr	J.zeit	N	Mittelw.	Median	Minimum	Maximum	abw.	abstand
BAKT	IT01	R	1993	F	10	5,94E+06	2,93E+06	3,92E+05	3,03E+07	8,948E+06	5,190E+06
BAKT	IT01	R	1993	H	10	1,19E+06	5,43E+05	2,12E+05	4,52E+06	1,491E+06	2,540E+05
BAKT	IT01	R	2000	F	10	6,06E+06	3,76E+06	1,08E+06	2,31E+07	6,465E+06	4,468E+06
BAKT	IT01	R	2000	ı Н	10	2,41E+06	2,18E+06	1,03E+06	4,65E+06	1,274E+06	2,011E+06
DANI	1101	K	2000	п	10	2,416+00	2,10⊑+00	1,13⊑+00	4,03⊑+00	1,274=+00	2,011⊑+00
BAKT	IT02	М	1993	F	10	4,76E+07	3,15E+07	1,20E+06	1,25E+08	4,231E+07	6,760E+07
BAKT	IT02	M	1993	Н	10	1,46E+07	1,65E+07	7,40E+05	2,70E+07	9,535E+06	1,920E+07
BAKT	IT02	M	2000	F	10	3,92E+07	3,55E+07	3,90E+06	6,66E+07	2,034E+07	3,301E+07
BAKT	IT02	М	2000	Н	10	5,32E+07	4,93E+07	1,13E+07	1,03E+08	3,007E+07	4,608E+07
BAKT	IT03	L	1993	F	10	7,01E+05	5,61E+05	2,78E+05	1,56E+06	4,266E+05	5,130E+05
BAKT	IT03	L	1993	Н	10	2,68E+05	1,28E+05	4,40E+04	1,17E+06	3,449E+05	3,104E+05
BAKT	IT03	L	2000	F	10	1,09E+06	9,04E+05	9,21E+04	3,02E+06	9,160E+05	1,391E+06
BAKT	IT03	L	2000	Н	10	2,70E+06	1,33E+06	7,25E+05	9,90E+06	2,884E+06	3,058E+06
BAKT	IT04	Р	1993	F	10	2,05E+08	1,45E+08	6,00E+07	5,53E+08	1,635E+08	1,550E+08
BAKT	IT04	' Р	1993	H	10	8,86E+07	5,10E+07	1,90E+07	3,90E+08	1,112E+08	8,100E+07
BAKT	IT04	Р	2000	F	10	9,79E+07	1,05E+08	5,96E+07	1,32E+08	2,421E+07	2,446E+07
BAKT	IT04	Р	2000	Н	10	9,79E+07 7,40E+07	7,52E+07	2,31E+07	1,32E+08 1,14E+08	2,421E+07 2,533E+07	2,440E+07 2,349E+07
DART	1104	Г	2000	11	10	7,400,707	7,32L + 07	2,31L+01	1,146+00	2,333L+07	2,349L+07
PILZE	IT01	R	1993	F	10	1,27E+06	7,92E+05	1,59E+05	3,66E+06	1,147E+06	4,930E+05
PILZE	IT01	R	1993	H	10	3,64E+05	2.05E+05	2.26E+04	1,31E+06	3,917E+05	4,930E+05
PILZE	IT01	R	2000	F	10	8,46E+03	7,20E+03	1,10E+03	2,20E+04	7,303E+03	1,059E+04
PILZE	IT01	R	2000	H	10	3,11E+04	1,59E+04	5,25E+03	1,12E+05	3,389E+04	3,856E+04
	1101	IX	2000	11	10	3,11L +04	1,086704	J,ZJLT03	1,12L+05	3,303LT04	3,030LT04
PILZE	IT02	М	1993	F	10	1,17E+07	8,09E+06	4,66E+05	3,51E+07	1,184E+07	1,760E+07
PILZE	IT02	M	1993	Н	10	1,01E+07	7,90E+06	4,90E+05	2,60E+07	7,881E+06	9,200E+06
PILZE	IT02	M	2000	F	10	1,79E+06	1,53E+06	9,24E+05	3,04E+06	6,912E+05	1,003E+06
PILZE	IT02	М	2000	Н	10	3,38E+06	3,54E+06	1,93E+06	4,96E+06	1,030E+06	1,354E+06
PILZE	IT03	L	1993	F	10	1,93E+05	9.71E+04	7,88E+03	9,17E+05	2,863E+05	1,508E+05
PILZE	IT03	L	1993	H	10	2,18E+05	4,00E+04	3,36E+03	1,55E+06	4,761E+05	1,192E+05
PILZE	IT03	L	2000	F	10	3,49E+03	1,28E+03	4,54E+02	1,46E+04	4,434E+03	3,580E+03
PILZE	IT03	Ĺ	2000	H	10	3,20E+04	1,26E+04	4,09E+03	1,83E+05	5,488E+04	1,700E+04
PILZE	IT04	Р	1993	F	10	4,65E+07	4,21E+07	1,58E+07	1,02E+08	3,019E+07	4,700E+07
PILZE	IT04	P	1993	H	10	5,69E+07	5,20E+07	1,70E+07	1,02E+08	3,338E+07	5,170E+07
PILZE	IT04	P	2000	F	10	1,43E+06	1,12E+06	3,73E+05	3,89E+06	1,060E+06	1,207E+06
PILZE	IT04	Р	2000	і Н	10	5,67E+06	5,48E+06	2,28E+06	1,11E+07	3,049E+06	4,979E+06

3.12 pH-Wert

3.12.1 Übersicht aller Effekte

Die Beobachtungsfläche beeinflusste den pH-Wert in signifikantem Ausmaß. Der pH-Wert war in der Fläche IT03 (Lavazè) am niedrigsten (pH 2,8), gefolgt von den Flächen IT01 (Ritten; pH 3,2), IT02 (Montiggl; pH 4,1) und IT04 (Pomarolo; pH 4,8). Es konnte keine Abhängigkeit des pH-Wertes von der Jahreszeit erkannt werden. Ebenso war die Kombination beider Effekte, Fläche und Jahreszeit, ohne signifikante Bedeutung (Tab. 4, Abb., 54).

3.12.2 Standortspezifische Effekte

Der pH-Wert im Frühjahr war nicht signifikant unterschiedlich vom pH-Wert im Herbst, dies galt für jede der vier Beobachtungsflächen (Tab. 5, Abb. 54). Die deskriptive Statistik zu den gemessenen pH-Werten zeigt Tab. 14.

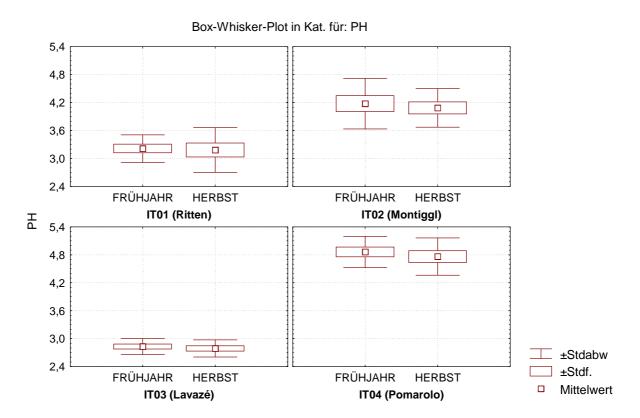


Abb. 54: Einfluss der Jahreszeit auf den pH-Wert.

3.13 Organische Substanz und Trockensubstanz

3.13.1 Übersicht aller Effekte

Die vier Beobachtungsflächen wiesen signifikant unterschiedliche TS- und OS-Werte auf. Den geringsten TS-Gehalt hatte die Fläche IT03 (Lavazè) auf (35,4%), den höchsten die Fläche IT04 (Pomarolo; 83,4%). Dazwischen lagen die TS-Werte für IT01 (Ritten; 58,7% TS) und IT02 (Montiggl; 72,6% TS) (Abb. 55).

Eine vollkommen andere Reihenfolge ergab sich hinsichtlich des OS-Gehaltes. Den geringsten OS-Gehalt hatten die Flächen IT04 (Pomarolo; 5,4% OS; die Fläche mit dem höchsten TS-Gehalt) und IT02 (Montiggl; 15.7% OS), der Unterschiede zwischen diesen beiden Flächen war nicht signifikant. Einen deutlichen höheren OS-Gehalt wies die Fläche IT01 (Ritten; 40,3% OS) auf; der höchste OS-Gehalt war in der Fläche IT03 (Lavazè; 81,1% OS), also jener Fläche mit dem geringsten TS-Gehalt, zu finden (Abb. 56).

Es konnte keine Abhängigkeit des TS- oder OS-Gehaltess von der Jahreszeit erkannt werden. Ebenso war die Kombination beider Effekte, Fläche und Jahreszeit, ohne signifikante Bedeutung. Beide Tests für nicht parametrische Daten bestätigten die OS-bezogenen Ergebnisse (Tab. 4, Abb., 55-56).

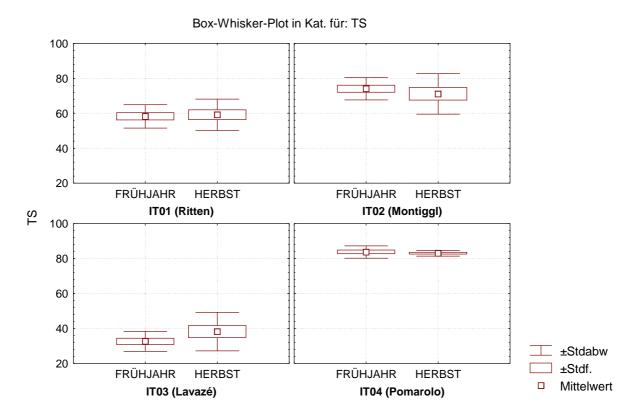


Abb. 55: Einfluss der Jahreszeit auf die Trockensubstanz (TS).

3.13.2 Standortspezifische Effekte

In keiner der vier Beobachtungsflächen hatte die Jahreszeit einen signifikanten Einfluss auf den TS- oder OS-Gehalt (Tab. 5, Abb. 55-56). Diese ANOVA-Ergebnis wurde durch den Median-Test bestätigt; die Kruskal-Wallis-ANOVA fand lediglich in der Fläche IT04 (Pomarolo) einen signifikant geringeren OS-Gehalt im Frühjahr als im Herbst.

Die deskriptive Statistik zu den TS- und OS-Werten zeigt Tab. 14.

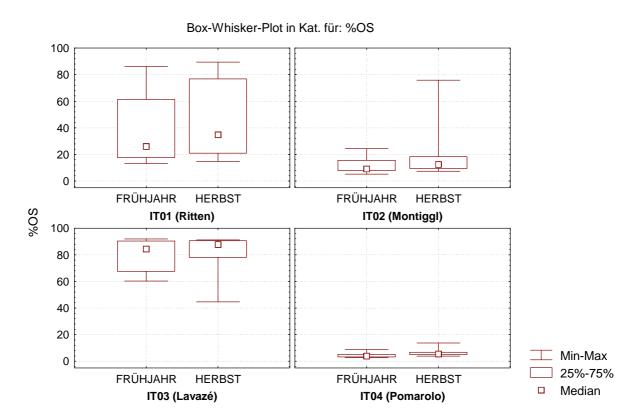


Abb. 56: Einfluss der Jahreszeit auf die organische Substanz (OS).

Tab. 14: Deskriptive Statistik der Parameter pH-Wert, Trockensubstanz (TS) und organische Substanz (OS) in den vier Dauerbeobachtungsflächen im Jahr 2000.

Parameter	Fläche	9	Jahr	J.zeit	N	Mittelw.	Median	Minimum	Maximum	Standard- abw.	Quartils- abstand
PH	IT01	R	2000	F	10	3,21	3,18	2,83	3,59	0,296	0,510
PH	IT01	R	2000	Н	10	3,18	3,00	2,80	4,34	0,480	0,520
PH	IT02	М	2000	F	10	4,18	4,09	3,43	5,23	0,542	0,520
PH	IT02	М	2000	Н	10	4,09	4,16	3,17	4,65	0,414	0,360
PH	IT03	L	2000	F	10	2,83	2,84	2,55	3,09	0,171	0,240
PH	IT03	L	2000	Н	10	2,79	2,78	2,55	3,16	0,184	0,250
PH	IT04	Р	2000	F	10	4,86	4,95	4,16	5,25	0,337	0,440
PH	IT04	Р	2000	Н	10	4,76	4,77	4,23	5,59	0,401	0,460
TS	IT01	R	2000	F	10	58,20	59,15	46,30	66,40	6,672	9,200
TS	IT01	R	2000	H	10	59,14	62,45	39,50	71,30	8,965	9,400
TS	IT02	М	2000	F	10	74,05	74,70	61,30	81,40	6,367	6,100
TS	IT02	М	2000	Н	10	71,10	75,55	43,10	80,10	11,618	10,900
TS	IT03	L	2000	F	10	32,58	32,80	26,00	41,60	5,760	10,100
TS	IT03	L	2000	Н	10	38,16	36,40	26,80	59,50	11,058	18,600
TS	IT04	Р	2000	F	10	83,76	83,50	77,40	88,70	3,530	5,000
TS	IT04	Р	2000	Н	10	83,06	83,05	81,10	85,80	1,636	2,600
OS	IT01	R	2000	F	10	36,48	26,05	13,10	86,20	25,955	43,700
os	IT01	R	2000	H	10	44,07	34,85	14,70	89,50	28,774	56,000
os	IT02	М	2000	F	10	11,55	9,20	5,20	24,30	5,896	7,600
os	IT02	М	2000	Н	10	19,78	12,50	7,34	75,79	20,503	8,890
os	IT03	L	2000	F	10	80,29	84,45	60,30	91,90	11,829	22,800
os	IT03	L	2000	Н	10	81,95	87,85	44,60	91,20	14,165	12,600
os	IT04	Р	2000	F	10	4,53	3,95	2,70	8,80	1,864	2,000
OS	IT04	Ρ	2000	Н	10	6,32	5,54	3,88	13,77	2,775	1,740

Tab. 4: Statistische Signifikanz (95% Signifikanzniveau) der Effekte (Beobachtungsflächen, Untersuchungsjahr, Jahreszeit) auf die gemessenen Parameter. Für normalverteilte Daten (ATM, ATP-ICP, N-MIN, PH, TS) wurde eine Varianzanalyse (ANOVA) durchgeführt, für nicht parametrische Daten (alle anderen Untersuchungsparameter) wurden zusätzlich geeignete Testverfahren (Kruskal-Wallis-ANOVA und Median-Test) herangezogen.

p-Wert < 0.05: der untersuchte Effekt ist statistisch signifikant (z.B. "Frühjahr > Herbst")

p-Wert > 0,05: der untersuchte Effekt ist statistisch nicht signifikant (in diesem Fall erhält man z.B. das Ergebnis "Frühjahr = Herbst")

				Α	NOVA	Kruskal-Wa	allis-ANOVA	Media	n-Test
Parameter		Effekt	Signifikanter		Ergebnis	•	er Einfluss?	_	er Einfluss?
			p-Wert	ja/nein		p-Wert	ja/nein	p-Wert	ja/nein
ATM	1,	Fläche	0,0000	ja	IT03 = IT01 < IT02 < IT04				
7 (110)	2	Jahr	0,0000	ja	1993 < 2000				
	3	Jahreszeit	0,0042	ja	Frühjahr > Herbst				
	12	Fläche, Jahr	0,0042	ja	Tranjam > Horbet				
	13	Fläche, Jahreszeit	0,0050	ja					
	23	Jahr, Jahreszeit	0,5662	nein					
	123	Fläche, Jahr, Jahreszeit	0,0002	ja					
ATM-ICP	1	Fläche	0,0000	ja	IT03 = IT01 < IT02 < IT04				
	2	Jahr	0,0002	ja	1993 < 2000				
	3	Jahreszeit	0,4512	nein	Frühjahr = Herbst				
	12	Fläche, Jahr	0,1994	nein	,				
	13	Fläche, Jahreszeit	0,7979	nein					
	23	Jahr, Jahreszeit	0,3139	nein					
	123	Fläche, Jahr, Jahreszeit	0,0451	ja					
SIR	1	Fläche	0,0000	ja	IT03 < IT01 < IT04 < IT02	0,0000	ja	0,8964	nein
	2	Jahr	0,0000	ja	1993 < 2000	0,0000	ja	0,0000	ja
	3	Jahreszeit	0,0144	ja	Frühjahr < Herbst	0,7744	nein	0,7518	nein
	12	Fläche, Jahr	0,0000	ja	-				
	13	Fläche, Jahreszeit	0,0873	nein					
	23	Jahr, Jahreszeit	0,0122	ja					
	123	Fläche, Jahr, Jahreszeit	0,0039	ja					

				A	NOVA	Kruskal-Wa	allis-ANOVA	Media	n-Test
Parameter		Effekt	Signifikanter p-Wert	Einfluss?	Ergebnis	Signifikante p-Wert	er Einfluss? ja/nein	Signifikante p-Wert	er Einfluss? ja/nein
DHG	1 2 3 12 13 23 123	Fläche Jahr Jahreszeit Fläche, Jahr Fläche, Jahreszeit Jahr, Jahreszeit Fläche, Jahr, Jahreszeit	0,0000 0,0000 0,3550 0,0000 0,3698 0,2962 0,3153	ja ja nein ja nein nein	IT03 < IT01 < IT02 < IT04 1993 > 2000 Frühjahr = Herbst	0,0000 0,0002 0,9484	ja ja nein	0,0000 0,1139 1,0000	ja nein nein
XYL	1 2 3 12 13 23 123	Fläche Jahr Jahreszeit Fläche, Jahr Fläche, Jahreszeit Jahr, Jahreszeit Fläche, Jahr, Jahreszeit	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	ja ja ja ja ja ja	IT03 = IT01 < IT04 = IT02 1993 > 2000 Frühjahr < Herbst	0,0001 0,0000 0,0892	ja ja nein	1,0000 0,0000 1,0000	nein ja nein
PROT	1 2 3 12 13 23 123	Fläche Jahr Jahreszeit Fläche, Jahr Fläche, Jahreszeit Jahr, Jahreszeit Fläche, Jahr, Jahreszeit	0,0000 0,0000 0,1426 0,0000 0,2965 0,1472 0,3044	ja ja nein ja nein nein nein	IT03 = IT01 < IT02 = IT04 1993 > 2000 Frühjahr = Herbst	0,0000 0,0000 0,7665	ja ja nein	0,0000 0,1139 1,0000	ja nein nein
NITRIF	1 2 3 12 13 23 123	Fläche Jahr Jahreszeit Fläche, Jahr Fläche, Jahreszeit Jahr, Jahreszeit Fläche, Jahr, Jahreszeit	0,5937 0,2050 0,2645 0,6084 0,7612 0,2360 0,7947	nein nein nein nein nein nein	IT01 = IT02 = IT03 = IT04 1993 = 2000 Frühjahr = Herbst	0,3193 0,6597 0,9374	nein nein nein	0,9243 0,1547 0,6352	nein nein nein

				Al	NOVA	Kruskal-Wa	allis-ANOVA	Media	n-Test
Parameter		Effekt	Signifikanter p-Wert	Einfluss?	Ergebnis	Signifikante p-Wert	er Einfluss? ja/nein	Signifikante p-Wert	er Einfluss? ja/nein
			p-vveit	ja/Hell1		p-vveit	ja/Hell1	p-vveit	ja/Hell1
PME	1	Fläche	0,0000	ja	IT03 < IT02 = IT01 = IT04	0,0005	ja	1,0000	nein
	2	Jahr	0,0000	ja	1993 < 2000	0,0000	ja	0,0000	ja
	3	Jahreszeit	0,4119	nein	Frühjahr = Herbst	0,4549	nein	1,0000	nein
	12	Fläche, Jahr	0,0000	ja	,	,			
	13	Fläche, Jahreszeit	0,4538	nein					
	23	Jahr, Jahreszeit	0,6553	nein					
	123	Fläche, Jahr, Jahreszeit	0,3686	nein					
PME-ICP	1	Fläche	0,0000	ja	IT03 < IT02 = IT01 = IT04	0,0002	ja	1,0000	nein
	2	Jahr	0,0000	ja	1993 < 2000	0,0000	ja	0,0000	ja
	3	Jahreszeit	0,0002	ja	Frühjahr < Herbst	0,1306	nein	1,0000	nein
	12	Fläche, Jahr	0,0000	ja	•				
	13	Fläche, Jahreszeit	0,2427	nein					
	23	Jahr, Jahreszeit	0,0008	ja					
	123	Fläche, Jahr, Jahreszeit	0,3228	nein					
SULF	1	Fläche	0,0000	ja	IT03 = IT01 < IT02 < IT04	0,0000	ja	0,0000	ja
	2	Jahr	0,0000	ja	1993 < 2000	0,0000	ja	0,0000	ja
	3	Jahreszeit	0,3797	nein	Frühjahr = Herbst	0,7587	nein	0,7518	nein
	12	Fläche, Jahr	0,0000	ja	,	,			
	13	Fläche, Jahreszeit	0,6752	nein					
	23	Jahr, Jahreszeit	0,1597	nein					
	123	Fläche, Jahr, Jahreszeit	0,8866	nein					
BAKT	1	Fläche	0,0000	ja	IT03 = IT01 < IT02 < IT04	0,0000	ja	0,0000	ja
	2	Jahr	0,1875	nein	1993 = 2000	0,0444	ja	0,5271	nein
	3	Jahreszeit	0,0128	ja	Frühjahr > Herbst	0,1065	nein	0,5271	nein
	12	Fläche, Jahr	0,0067	ja	-				
	13	Fläche, Jahreszeit	0,0087	ja					
	23	Jahr, Jahreszeit	0,0322	ja					
	123	Fläche, Jahr, Jahreszeit	0,1607	•					

				Al	NOVA	Kruskal-Wa	allis-ANOVA	Media	n-Test
Parameter		Effekt	Signifikantei p-Wert	Einfluss? ja/nein	Ergebnis	Signifikanto p-Wert	er Einfluss? ja/nein	Signifikanto p-Wert	er Einfluss? ja/nein
PILZE	1 2 3 12 13 23 123	Fläche Jahr Jahreszeit Fläche, Jahr Fläche, Jahreszeit Jahr, Jahreszeit Fläche, Jahr, Jahreszeit	0,0000 0,0000 0,3583 0,0000 0,4006 0,8930 0,8410	ja ja nein ja nein nein nein	IT03 = IT01 < IT02 < IT04 1993 > 2000 Frühjahr = Herbst	0,0000 0,0000 0,2741	ja ja nein	0,0000 0,2059 0,7518	ja nein nein
N-MIN (2000)	1 2 12	Fläche Jahreszeit Fläche, Jahreszeit	0,0663 0,0000 0,0000	ja ja ja	IT01 = IT03 = IT04 = IT02 Frühjahr > Herbst				
PH (2000)	1 2 12	Fläche Jahreszeit Fläche, Jahreszeit	0,0000 0,4399 0,9877	ja nein nein	IT03 < IT01 < IT02 < IT04 Frühjahr = Herbst				
TS (2000)	1 2 12	Fläche Jahreszeit Fläche, Jahreszeit	0,0000 0,6771 0,3514	ja nein nein	IT03 < IT01 < IT02 < IT04 Frühjahr = Herbst				
OS (2000)	1 2 12	Fläche Jahreszeit Fläche, Jahreszeit	0,000 0,2090 0,8807	ja nein nein	IT04 = IT02 < IT01 < IT03 Frühjahr = Herbst	0,0000 0,3506	ja nein	0,0000 0,3711	ja nein

Tab. 5: Statistische Signifikanz (95% Signifikanzniveau) der Effekte (Untersuchungsjahr, Jahreszeit) auf die gemessenen Untersuchungsparameter in jeder der vier Dauerbeobachtungsflächen. Für normalverteilte Daten (ATM, ATP-ICP, N-MIN, PH, TS) wurde eine Varianzanalyse (ANOVA) durchgeführt, für nicht parametrische Daten (alle anderen Untersuchungsparameter) wurden zusätzlich geeignete Testverfahren (Kruskal-Wallis-ANOVA und Median-Test) herangezogen. Die Spalte "Ergebnis" bezieht sich auf das in Tab. 4 erhaltene Ergebnis, und soll hier für jede einzelne Fläche überprüft werden. p-Wert < 0,05: der untersuchte Effekt ist statistisch signifikant (z. B. Frühjahr > Herbst")

p-Wert > 0,05: der untersuchte Effekt ist statistisch nicht signifikant (in diesem Fall erhält man z.B. das Ergebnis "Frühjahr = Herbst")

						Sig	nifikanter Einflu	iss auf die jew	eilige Dauerbe	obachtungsflä	che?	
Parameter	Test		Effekt	Ergebnis	IT01 (F p-Wert	Ritten) ja/nein	IT02 (M p-Wert	lontiggl) ja/nein	IT03 (L p-Wert	.avazé) ja/nein	IT04 (Po	marolo) ja/nein
ATM	ANOVA	1 2 12	Jahr Jahreszeit Jahr, Jahreszeit	1993 < 2000 Frühjahr > Herbst	0,0000 0,9720 0,0066	ja nein ja	0,0420 0,0388 0,4619	ja ja nein	0,0000 0,1213 0,0216	ja nein ja	0,8645 0,0144 0,0091	nein ja ja
ATM-ICP	ANOVA	1 2 12	Jahr Jahreszeit Jahr, Jahreszeit	1993 < 2000 Frühjahr = Herbst	0,0003 0,0912 0,9344	ja nein nein	0,0275 0,7799 0,0382	ja nein ja	0,0000 0,4942 0,9551	ja nein nein	0,9164 0,6039 0,4965	nein nein nein
SIR	ANOVA	1 2 12	Jahr Jahreszeit Jahr, Jahreszeit	1993 < 2000 Frühjahr < Herbst	0,0000 0,2511 0,1362	ja nein nein	0,0000 0,0142 0,0015	ja ja ja	0,0000 0,5921 0,7343	ja nein nein	0,0000 0,3743 0,8433	ja nein nein
SIR	KW-ANOVA	1 2	Jahr Jahreszeit		0,0000 0,9875	ja nein	0,0000 0,7049	ja nein	0,0000 0,4171	ja nein	0,0000 0,5162	ja nein
SIR	Median-Test	1 2	Jahr Jahreszeit		0,0000 1,0000	ja nein	0,000 1,0000	ja nein	0,000 1,0000	ja nein	0,000 1,0000	ja nein
DHG	ANOVA	1 2 12	Jahr Jahreszeit Jahr, Jahreszeit	1993 > 2000 Frühjahr = Herbst	0,1272 0,3425 0,3306	nein nein nein	0,0000 0,5918 0,6580	ja nein nein	0,6724 0,9370 0,3331	nein nein nein	0,0000 0,2885 0,2478	ja nein nein
DHG	KW-ANOVA	1 2	Jahr Jahreszeit		0,0058 0,6894	ja nein	0,0000 0,6263	ja nein	0,2313 0,6438	nein nein	0,0000 0,8077	ja nein
DHG	Median-Test	1 2	Jahr Jahreszeit		0,2059 1,0000	nein nein	0,0000 0,5271	ja nein	0,0578 0,5271	nein nein	0,000 1,0000	ja nein

					Sig	nifikanter Einflu	ss auf die jew	eilige Dauerbed	obachtungsflä	che?	
Parameter	Test	Effekt	Ergebnis	IT01 (I p-Wert	Ritten) ja/nein	IT02 (M	ontiggl) ja/nein	IT03 (L	avazé) ja/nein	IT04 (Po	omarolo) ja/nein
XYL	ANOVA	1 Jahr 2 Jahreszeit 12 Jahr, Jahreszeit	1993 > 2000 Frühjahr < Herbst	0,0000 0,0000 0,0000	ja/nem ja ja ja	0,0000 0,0100 0,0098	ja ja ja ja	0,0000 0,0332 0,0364	ja/nein ja ja ja	0,0000 0,0000 0,0000	ja/nein ja ja ja
XYL	KW-ANOVA	1 Jahr 2 Jahreszeit		0,000 0,3040	ja nein	0,0000 0,4819	ja nein	0,0000 0,2235	ja nein	0,0000 0,3720	ja nein
XYL	Median-Test	1 Jahr 2 Jahreszeit		0,0000 1,0000	ja nein	0,000 1,0000	ja nein	0,000 1,0000	ja nein	0,0000 1,0000	ja nein
PROT	ANOVA	1 Jahr 2 Jahreszeit 12 Jahr, Jahreszeit	1993 > 2000 Frühjahr = Herbst	0,0576 0,6725 0,6727	nein nein nein	0,0000 0,1073 0,1103	ja nein nein	0,0000 0,0133 0,0239	ja ja ja	0,0000 0,7568 0,7819	ja nein nein
PROT	KW-ANOVA	1 Jahr 2 Jahreszeit		0,0000 0,3866	ja nein	0,0000 0,7661	ja nein	0,0000 0,0785	ja nein	0,0000 0,8077	ja nein
PROT	Median-Test	1 Jahr 2 Jahreszeit		0,2059 1,0000	nein nein	0,0000 0,5271	ja nein	0,0578 0,5271	nein nein	0,000 1,0000	ja nein
NITRIF	ANOVA	1 Jahr 2 Jahreszeit 12 Jahr, Jahreszeit	1993 = 2000 Frühjahr = Herbst	0,0782 0,1085 0,1070	nein nein nein	0,3539 0,4432 0,4468	nein nein nein	0,0004 0,3911 0,3911	ja nein nein	0,8751 0,9203 0,7845	nein nein nein
NITRIF	KW-ANOVA	1 Jahr 2 Jahreszeit		0,0045 0,1635	ja nein	0,0045 0,2503	ja nein	0,0000 0,9891	ja nein	0,0049 0,6168	ja nein
NITRIF	Median-Test	1 Jahr 2 Jahreszeit		0,0016 0,5271	ja nein	0,0114 0,5271	ja nein	0,0000 0,7515	ja nein	0,0016 0,5271	ja nein
N-MIN	ANOVA	1 Jahreszeit	Frühjahr > Herbst	0,9860	nein	0,0022	ja	0,5177	nein	0,000	ja

					Sig	nifikanter Einflu	ıss auf die jew	eilige Dauerbe	obachtungsflä	che?	
Parameter	Test	Effekt	Ergebnis	IT01 (,	IT02 (M		,	_avazé)	,	omarolo)
				p-Wert	ja/nein	p-Wert	ja/nein	p-Wert	ja/nein	p-Wert	ja/nein
PME	ANOVA	1 Jahr 2 Jahreszeit 12 Jahr, Jahreszeit	1993 < 2000 Frühjahr = Herbst	0,0000 0,7788 0,7982	ja nein nein	0,0000 0,2362 0,4076	ja nein nein	0,0000 0,1706 0,1762	ja nein nein	0,0000 0,1545 0,0508	ja nein nein
PME	KW-ANOVA	1 Jahr 2 Jahreszeit		0,0000 0,8392	ja nein	0,0000 0,2977	ja nein	0,0000 0,7764	ja nein	0,0000 0,9891	ja nein
PME	Median-Test	1 Jahr 2 Jahreszeit		0,000 1,0000	ja nein	0,000 1,0000	ja nein	0,000 1,0000	ja nein	0,0000 1,0000	ja nein
PME-ICP	ANOVA	1 Jahr 2 Jahreszeit 12 Jahr, Jahreszeit	1993 < 2000 Frühjahr < Herbst	0,0000 0,4667 0,4832	ja nein nein	0,0000 0,0004 0,0013	ja ja ja	0,0000 0,0206 0,0217	ja ja ja	0,0000 0,0731 0,1808	ja nein nein
PME-ICP	KW-ANOVA	1 Jahr 2 Jahreszeit		0,0000 0,0715	ja nein	0,000 0,0639	ja nein	0,000 0,4903	ja nein	0,0000 0,2732	ja nein
PME-ICP	Median-Test	1 Jahr 2 Jahreszeit		0,000 1,0000	ja nein	0,000 1,0000	ja nein	0,000 1,0000	ja nein	0,0000 1,0000	ja nein
SULF	ANOVA	1 Jahr 2 Jahreszeit 12 Jahr, Jahreszeit	1993 < 2000 Frühjahr = Herbst	0,0002 0,9856 0,7027	ja nein nein	0,0000 0,6790 0,3825	ja nein nein	0,0000 0,6902 0,1314	ja nein nein	0,0000 0,3618 0,4158	ja nein nein
SULF	KW-ANOVA	1 Jahr 2 Jahreszeit		0,0000 0,5790	ja nein	0,0000 0,9138	ja nein	0,0000 0,3232	ja nein	0,0000 0,5518	ja nein
SULF	Median-Test	1 Jahr 2 Jahreszeit		0,0016 0,5271	ja nein	0,0000 0,5271	ja nein	0,0000 0,5271	ja nein	0,0000 0,5271	ja nein

						Sig	nifikanter Einflu	ss auf die jew	eilige Dauerbe	obachtungsflä	che?	
Parameter	Test		Effekt	Ergebnis	IT01 (F	,	IT02 (M		IT03 (L	,	IT04 (Po	,
					p-Wert	ja/nein	p-Wert	ja/nein	p-Wert	ja/nein	p-Wert	ja/nein
BAKT	ANOVA	1 2 12	Jahr Jahreszeit Jahr, Jahreszeit	1993 = 2000 Frühjahr > Herbst	0,7077 0,0234 0,7608	nein ja nein	0,1001 0,2961 0,0125	nein nein ja	0,0063 0,2323 0,0423	ja nein ja	0,0630 0,0335 0,1529	nein ja nein
BAKT	KW-ANOVA	1 2	Jahr Jahreszeit		0,0453 0,0199	ja ja	0,0087 0,2235	ja nein	0,0008 0,8077	ja nein	0,4819 0,0013	nein ja
BAKT	Median-Test	1 2	Jahr Jahreszeit		0,2059 0,0578	nein nein	0,0016 0,2059	ja nein	0,0016 1,0000	ja nein	0,5271 0,0114	nein ja
PILZE	ANOVA	1 2 12	Jahr Jahreszeit Jahr, Jahreszeit	1993 > 2000 Frühjahr = Herbst	0,0002 0,0269 0,0204	ja ja ja	0,0007 0,9928 0,4913	ja nein nein	0,0404 0,7648 0,9829	ja nein nein	0,0000 0,3134 0,6721	ja nein nein
PILZE	KW-ANOVA	1	Jahr Jahreszeit		0,0000 0,8711	ja nein	0,0005 0,1135	ja nein	0,0001 0,1942	ja nein	0,0000 0,1677	ja nein
PILZE	Median-Test	1 2	Jahr Jahreszeit		0,0000 1,0000	ja nein	0,0016 0,0578	ja nein	0,0001 0,2059	ja nein	0,0000 1,0000	ja nein
PH	ANOVA	1	Jahreszeit	Frühjahr = Herbst	0,8683	nein	0,6780	nein	0,6212	nein	0,5576	nein
TS	ANOVA	1	Jahreszeit	Frühjahr = Herbst	0,7933	nein	0,4904	nein	0,1741	nein	0,5764	nein
os	ANOVA KW-ANOVA Median-Test	1 1 1	Jahreszeit Jahreszeit Jahreszeit	Frühjahr = Herbst	0,5434 0,3644 1,0000	nein nein nein	0,2384 0,2265 0,3711	nein nein nein	0,7793 0,7054 0,3711	nein nein nein	0,1086 0,0411 0,0736	nein ja nein

3.14 Korrelationen

In die Berechnung der Korrelationen zwischen den einzelnen Untersuchungsparametern wurden zunächst alle 1993 und 2000 angefallenen Daten miteinbezogen; weiters wurden die Korrelationen in den einzelnen Dauerbeobachtungsflächen geprüft (Tab. 15).

Bodenproben mit hoher Atmungsaktivität wiesen gleichzeitig eine hohe Biomasse (SIR), eine hohe Dehydrogenase-, Protease-, Phosphatase und Sulfataseaktivität, und ein hohe Gesamt-keimzahl an Bakterien und Pilzen auf, jedoch eine niedrige N-Mineralisationsrate. Die Biomasse korrelierte mit allen gemessenen Parametern, mit Ausnahme des Nitrifikations-umsatzes und der Gesamtkeimzahl an Pilzen. Im Fall der N-Mineralisationsrate, Xylanase-und Proteaseaktivität war die Korrelation negativ.

Die Dehydrogenaseaktivität korrelierte positiv mit der Bodenatmung, Biomasse (SIR), Xylanase-, Protease- und Sulfataseaktivität, sowie mit der Gesamtkeimzahl an Bakterien und Pilzen, eine negative Korreletion bestand nur zwischen Dehydrogenaseaktivität und N-Mineralisationsrate. Ein Zusammenhang mit dem Nitrifikationsumsatz oder der sauren Phosphataseaktivität der Bodenproben bestand nicht. Auch die Xylanaseaktivität korrelierte mit nahezu allen bodenbiologischen Parametern, wobei allerdings zumeist ein negativer Zusammenhang (SIR, Nitrifikationsumsatz, N-Mineralisationsrate, Phosphataseaktivität) hergestellt werden konnte. Eine Korrelation mit dem Nitrifikationsumsatz oder der Bodenatmung konnte nicht festgestellt werden.

Der Nitrifikationsumsatz der Bodenproben korrelierte nur mit der N-Mineralisationsrate (positive Korrelation), ansonsten konnte kein Zusammenhang mit einem der untersuchten Parameter festgestellt werden. Die N-Mineralisationsrate dagegen korrelierte mit sämtlichen bodenbiologischen Parametern negativ; demzufolge wiesen Bodenproben mit hohen Aktivitäten eine geringe N-Mineralisationsrate auf. Auch die in den N-Kreislauf involvierte Proteaseaktivität korrelierte mit allen Parametern außer Atmung (Jäggi-Methode), Nitrifikationsumsatz und Sulfataseaktivität. Eine hohe Proteaseaktivität war nur in Bodenproben mit hoher Atmungs- (ICP-Methode), Dehydrogenase- oder Xylanaseaktivität, bzw. in Bodenproben mit hohen Keimzahlen zu finden. Bodenproben mit hoher Phosphataseaktivität, N-Mineralisationsrate und SIR hatten eine geringe Proteaseaktivität.

Mit Ausnahme der sauren Phosphataseaktivität korrelierte keine der gemessenen bodenbiologischen Aktivitäten mit den untersuchten bodenchemischen oder -physikalischen Parametern

(pH-Wert, TS, OS). Ein saurer pH-Wert, ein geringer TS-Gehalt bzw. ein hoher OS-Gehalt der Bodenproben bewirkte eine hohe Phosphataseaktivität.

Die Sulfataseaktivität korrelierte mit nahezu allen bodenbiologischen Parametern, mit Ausnahme von Proteaseaktivität und Nitrifikationsumsatz. Eine negative Korrelation bestand nur mit der Xylanaseaktivität und der N-Mineralisationsrate (d.h. Bodenproben mit hoher Sulfataseaktivität hatten eine geringe Xylanaseaktivität bzw. eine geringe N-Mineralisationsrate, und umgekehrt), alle anderen Parameter korrelierten positiv.

Die Gesamtkeimzahl an Bakterien korrelierte mit nahezu allen untersuchten bodenbiologischen Aktivitäten positiv (d.h. in Bodenproben mit z.B. hohen Enzymaktivitäten waren auch hohe Bakterienkeimzahlen zu finden); keine Korrelation bestand zwischen der Gesamtkeimzahl an Bakterien und der Xylanaseaktivität oder dem Nitrifikationsumsatz. Bezüglich der Gesamtkeimzahl an Pilzen bestand ein ähnlicher Trend wir für die Gesamtkeimzahl an Bakterien, allerdings bestand keine Korrelation mit der Biomasse (SIR) oder sauren Phosphataseaktivität. Bakterien- und Pilzkeimzahlen korrelierten positiv.

Der pH-Wert, die TS und die OS der Bodenproben korrelierten miteinander. Ein hoher pH-Wert bewirkte demnach einen hohen TS-Gehalt bzw. einen geringen OS-Gehalt. Mit zunehmendem TS-Gehalt nahm die OS der Bodenproben ab.

Tab. 15: Korrelationen (Spearmans-Rangkorrelationen für nicht parametrische Daten) zwischen den Untersuchungsparametern. Signifikante Korrelationen sind fett markiert. Anhand des Korrelationskoeffizienten (R) kann festgestellt werden, ob eine positive oder eine negative Korrelation vorliegt.

Parameter	A ⁻	TM	ATM	1-ICP	s	IR	DI	HG	X	YL	PF	ОТ	NIT	RIF	N-N	ЛIN
n	1	60	1	60	10	60	10	60	10	60	1	60	16	60	8	0
Korrelation	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert
ATM			0,8761	0,0000	0,6632	0,0000	0,6969	0,0000	-0,0168	0,8334	0,1239	0,1187	0,0803	0,3128	-0,2530	0,0236
ATM-ICP	0,8761	0,0000	.,.	•	0,6217	0,0000	0,7051	0,0000	0,0441	0,5801	0,1948	0,0136	0,0218	0,7840	-0,3449	0,0017
SIR	0,6632	0,0000	0,6217	0,0000	ĺ ,		0,2089	0,0080	-0,6006	0,0000	-0,5270	0,0000	0,0174	0,8273	-0,4330	0,0001
DHG	0,6969	0,0000	0,7051	0,0000	0,2089	0,0080			0,4601	0,0000	0,6292	0,0000	-0,0195	0,8064	-0,6040	0,0000
XYL	-0,0168	0,8334	0,0441	0,5801	-0,6006	0,0000	0,4601	0,0000			0,9076	0,0000	-0,1465	0,0644	-0,3932	0,0003
PROT	0,1239	0,1187	0,1948	0,0136	-0,5270	0,0000	0,6292	0,0000	0,9076	0,0000			-0,0692	0,3847	-0,5412	0,0000
NITRIF	0,0803	0,3128	0,0218	0,7840	0,0174	0,8273	-0,0195	0,8064	-0,1465	0,0644	-0,0692	0,3847			0,2702	0,0154
N-MIN	-0,2530	0,0236	-0,3449	0,0017	-0,4330	0,0001	-0,6040	0,0000	-0,3932	0,0003	-0,5412	0,0000	0,2702	0,0154		
PME	0,5440	0,0000	0,5087	0,0000	0,9096	0,0000	0,1155	0,1459	-0,6486	0,0000	-0,5828	0,0000	0,0143	0,8579	-0,3666	0,0008
PME-ICP	0,5470	0,0000	0,5192	0,0000	0,9193	0,0000	0,1180	0,1374	-0,6575	0,0000	-0,5834	0,0000	0,0186	0,8156	-0,4280	0,0001
SULF	0,7526	0,0000	0,7425	0,0000	0,7880	0,0000	0,5751	0,0000	-0,2264	0,0040	-0,0635	0,4250	-0,0338	0,6713	-0,5554	0,0000
BAKT	0,8425	0,0000	0,8221	0,0000	0,5423	0,0000	0,7909	0,0000	0,0831	0,2960	0,2735	0,0005	-0,0334	0,6747	-0,5673	0,0000
PILZE	0,5924	0,0000	0,5943	0,0000	0,0416	0,6012	0,8509	0,0000	0,5837	0,0000	0,6846	0,0000	-0,1195	0,1322	-0,4711	0,0000
PH	-0,1339	0,2364	-0,1561	0,1667	0,0173	0,8790	-0,0170	0,8812	0,0261	0,8183	0,0047	0,9667	-0,1024	0,3659	0,0372	0,7433
TS	-0,0893	0,4311	-0,0981	0,3866	0,0378	0,7390	0,0249	0,8267	0,1250	0,2693	0,0437	0,7001	-0,1142	0,3130	-0,0104	0,9269
os	0,1739	0,1228	0,1885	0,0940	0,0264	0,8162	0,0500	0,6595	-0,0407	0,7200	0,0395	0,7282	0,0818	0,4704	-0,0620	0,5847

Parameter	PI	ME	PME	E-ICP	SL	JLF	BA	KT	PIL	_ZE	Р	Н	Т	·s	C	ıs
n	10	60	10	60	1	60	1	60		60	8	0	8	80		0
Korrelation	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert
ATM ATM-ICP SIR DHG XYL PROT	0,5440 0,5087 0,9096 0,1155 -0,6486 -0,5828	0,0000 0,0000 0,0000 0,1459 0,0000 0,0000	0,5470 0,5192 0,9193 0,1180 -0,6575 -0,5834	0,0000 0,0000 0,0000 0,1374 0,0000 0,0000	0,7526 0,7425 0,7880 0,5751 -0,2264 -0,0635	0,0000 0,0000 0,0000 0,0000 0,0040 0,4250	0,8425 0,8221 0,5423 0,7909 0,0831 0,2735	0,0000 0,0000 0,0000 0,0000 0,2960 0,0005	0,5924 0,5943 0,0416 0,8509 0,5837 0,6846	0,0000 0,0000 0,6012 0,0000 0,0000	-0,1339 -0,1561 0,0173 -0,0170 0,0261 0,0047	0,2364 0,1667 0,8790 0,8812 0,8183 0,9667	-0,0893 -0,0981 0,0378 0,0249 0,1250 0,0437	0,4311 0,3866 0,7390 0,8267 0,2693 0,7001	0,1739 0,1885 0,0264 0,0500 -0,0407 0,0395	0,1228 0,0940 0,8162 0,6595 0,7200 0,7282
NITRIF N-MIN PME	0,0143 -0,3666	0,8579 0,0008	0,0186 -0,4280 0,9810	0,8156 0,0001 0,0000	-0,0338 -0,5554 0,7246	0,6713 0,0000 0,0000	-0,0334 -0,5673 0,4080	0,6747 0,0000 0,0000	-0,1195 -0,4711 -0,0879	0,1322 0,0000 0,2690	-0,1024 0,0372 -0,1988	0,3659 0,7433 0,0771	-0,1142 -0,0104 -0,2321	0,3130 0,9269 0,0383	0,0818 -0,0620 0,2406	0,4704 0,5847 0,0316
PME-ICP SULF BAKT PILZE	0,9810 0,7246 0,4080 -0,0879	0,0000 0,0000 0,0000 0,2690	0,7107 0,4148 -0,0651	0,0000 0,0000 0,4135	0,7107 0,7539 0,3537	0,0000 0,0000 0,0000	0,4148 0,7539 0,7236	0,0000 0,0000	-0,0651 0,3537 0,7236	0,4135 0,0000 0,0000	-0,2249 0,1267 -0,0052 -0,0691	0,0448 0,2629 0,9636 0,5427	-0,2939 0,1534 0,0441 -0,0257	0,0081 0,1743 0,6978 0,8209	0,3136 -0,0932 0,0645 0,1279	0,0046 0,4108 0,5700 0,2581
PH TS OS	-0,1988 -0,2321 0,2406	0,0771 0,0383 0,0316	-0,2249 -0,2939 0,3136	0,0448 0,0081 0,0046	0,1267 0,1534 -0,0932	0,2629 0,1743 0,4108	-0,0052 0,0441 0,0645	0,9636 0,6978 0,5700	-0,0691 -0,0257 0,1279	0,5427 0,8209 0,2581	0,8728 -0,8765	0,0000 0,0000	0,8728 -0,9536	0,0000	-0,8765 -0,9536	0,0000 0,0000

n = 160: jeweils 10 Bäume in 4 Beobachtungsflächen, untersucht 1993 und 2000, jeweils im Frühjahr und im Herbst n = 20: jeweils 10 Bäume in 4 Beobachtungsflächen, untersucht 2000, jeweils im Frühjahr und im Herbst

IT01 (Ritten)

Parameter	A ⁻	TM	ATM	I-ICP	S	IR	Dŀ	⊣G	X	YL	PR	ОТ	NIT	RIF	N-N	MIN
n	4	10	4	0	4	.0	4	10	4	10	4	0	4	.0	2	0
Korrelation	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert
ATM			0,7309	0,0000	0,9065	0,0000	-0,2574	0,1088	-0,7341	0,0000	-0,7192	0,0000	0,6254	0,0000	0,3323	0,1523
ATM-ICP	0,7309	0,0000			0,7288	0,0000	-0,0302	0,8532	-0,4583	0,0029	-0,4324	0,0053	0,4161	0,0076	-0,2436	0,3007
SIR	0,9065	0,0000	0,7288	0,0000			-0,2403	0,1352	-0,7160	0,0000	-0,7052	0,0000	0,4684	0,0023	0,1549	0,5144
DHG	-0,2574	0,1088	-0,0302	0,8532	-0,2403	0,1352			0,4197	0,0070	0,6115	0,0000	-0,1683	0,2991	-0,4496	0,0467
XYL	-0,7341	0,0000	-0,4583	0,0029	-0,7160	0,0000	0,4197	0,0070			0,9132	0,0000	-0,4642	0,0025	-0,2556	0,2767
PROT	-0,7192	0,0000	-0,4324	0,0053	-0,7052	0,0000	0,6115	0,0000	0,9132	0,0000			-0,4328	0,0053	-0,4045	0,0769
NITRIF	0,6254	0,0000	0,4161	0,0076	0,4684	0,0023	-0,1683	0,2991	-0,4642	0,0025	-0,4328	0,0053			0,0632	0,7914
N-MIN	0,3323	0,1523	-0,2436	0,3007	0,1549	0,5144	-0,4496	0,0467	-0,2556	0,2767	-0,4045	0,0769	0,0632	0,7914		
PME	0,7876	0,0000	0,7179	0,0000	0,8709	0,0000	-0,0984	0,5458	-0,6825	0,0000	-0,6241	0,0000	0,4432	0,0042	-0,2737	0,2430
PME-ICP	0,8215	0,0000	0,6999	0,0000	0,8664	0,0000	-0,1506	0,3537	-0,6830	0,0000	-0,6498	0,0000	0,4945	0,0012	-0,1008	0,6726
SULF	0,5048	0,0009	0,5336	0,0004	0,6544	0,0000	0,1465	0,3670	-0,4152	0,0077	-0,2624	0,1019	0,3013	0,0589	-0,3955	0,0844
BAKT	0,2529	0,1153	0,3533	0,0253	0,2992	0,0607	0,1961	0,2253	-0,4294	0,0057	-0,2540	0,1138	0,1803	0,2657	-0,3368	0,1464
PILZE	-0,4890	0,0014	-0,4192	0,0071	-0,6465	0,0000	0,3073	0,0537	0,6390	0,0000	0,6311	0,0000	-0,2382	0,1389	0,3338	0,1503
PH	-0,2966	0,2042	0,1588	0,5036	-0,1897	0,4231	0,3417	0,1403	0,0519	0,8278	0,4072	0,0747	-0,5661	0,0093	-0,0866	0,7167
TS	-0,2526	0,2826	0,2917	0,2120	-0,2316	0,3259	0,0331	0,8899	0,2075	0,3800	0,1850	0,4350	-0,5609	0,0101	-0,1880	0,4274
os	0,2693	0,2509	-0,2339	0,3209	0,1376	0,5628	-0,2219	0,3471	-0,2527	0,2824	-0,3663	0,1122	0,6145	0,0039	0,2911	0,2131
	0,2000	0,2000	0,2000	0,0200	0,1070	0,0020	0, <u>22</u> 10	0,0471	0,2021	0,2024	0,3000	0,1122	0,0140	2,2000	0,2011	0,2101

Parameter	PI	ME	PME	-ICP	SL	JLF	BA	KT	PII	_ZE	Р	Ή	т	S	0	S
n	4	10	4	0	4	10	4	.0	4	Ю	2	:0	2	:0	2	0
Korrelation	R	p-Wert														
ATM	0,7876	0,0000	0,8215	0,0000	0,5048	0,0009	0,2529	0,1153	-0,4890	0,0014	-0,2966	0,2042	-0,2526	0,2826	0,2693	0,2509
ATM-ICP	0.7179	0,0000	0,6999	0,0000	0,5336	0,0004	0,3533	0,0253	-0,4192	0,0071	0,1588	0,5036	0,2917	0,2020	-0,2339	0,3209
SIR	0,8709	0,0000	0,8664	0,0000	0,6544	0,0000	0,2992	0,0607	-0,6465	0,0000	-0,1897	0,4231	-0,2316	0,3259	0,1376	0,5628
DHG	-0,0984	0,5458	-0,1506	0,3537	0,1465	0,3670	0,1961	0,2253	0,3073	0,0537	0,3417	0,1403	0,0331	0,8899	-0,2219	0,3471
XYL	-0,6825	0,0000	-0,6830	0,0000	-0,4152	0,0077	-0,4294	0,0057	0,6390	0,0000	0,0519	0,8278	0,2075	0,3800	-0,2527	0,2824
PROT	-0,6241	0,0000	-0,6498	0,0000	-0,2624	0,1019	-0,2540	0,1138	0,6311	0,0000	0,4072	0,0747	0,1850	0,4350	-0,3663	0,1122
NITRIF	0,4432	0,0042	0,4945	0,0012	0,3013	0,0589	0,1803	0,2657	-0,2382	0,1389	-0,5661	0,0093	-0,5609	0,0101	0,6145	0,0039
N-MIN	-0,2737	0,2430	-0,1008	0,6726	-0,3955	0,0844	-0,3368	0,1464	0,3338	0,1503	-0,0866	0,7167	-0,1880	0,4274	0,2911	0,2131
PME			0,9859	0,0000	0,7541	0,0000	0,3209	0,0435	-0,7538	0,0000	0,1415	0,5518	-0,0361	0,8799	-0,0918	0,7004
PME-ICP	0,9859	0,0000			0,7148	0,0000	0,2939	0,0656	-0,7214	0,0000	-0,0843	0,7238	-0,1624	0,4939	0,0662	0,7816
SULF	0,7541	0,0000	0,7148	0,0000			0,4260	0,0061	-0,6902	0,0000	0,4848	0,0303	0,2496	0,2885	-0,4475	0,0479
BAKT	0,3209	0,0435	0,2939	0,0656	0,4260	0,0061			-0,2598	0,1055	0,4336	0,0562	0,3519	0,1281	-0,4129	0,0704
PILZE	-0,7538	0,0000	-0,7214	0,0000	-0,6902	0,0000	-0,2598	0,1055			-0,7008	0,0006	-0,4962	0,0261	0,5754	0,0079
PH	0,1415	0,5518	-0,0843	0,7238	0,4848	0,0303	0,4336	0,0562	-0,7008	0,0006			0,6586	0,0016	-0,6822	0,0009
TS	-0,0361	0,8799	-0,1624	0,4939	0,2496	0,2885	0,3519	0,1281	-0,4962	0,0261	0,6586	0,0016			-0,8838	0,0000
os	-0,0918	0,7004	0,0662	0,7816	-0,4475	0,0479	-0,4129	0,0704	0,5754	0,0079	-0,6822	0,0009	-0,8838	0,0000		

n=40: 10 Bäume je Beobachtungsfläche, untersucht 1993 und 2000, jeweils im Frühjahr und im Herbst n=20: 10 Bäume je Beobachtungsfläche, untersucht 2000, jeweils im Frühjahr und im Herbst

IT02 (MontiggI)

Parameter	A ⁻	TM	ATM	1-ICP	S	IR	Dł	HG	X	YL	PR	OT	NIT	RIF	N-1	ИIN
n	4	10	4	0	4	0	4	Ю	4	0	4	10	4	0	2	0
Korrelation	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert
ATM			0,8217	0,0000	0,5815	0,0001	0,1790	0,2691	-0,1743	0,2821	0,0798	0,6244	-0,1096	0,5007	0,1850	0,4350
ATM-ICP	0,8217	0,0000			0,6131	0,0000	0,2450	0,1275	-0,1250	0,4423	0,1123	0,4903	-0,0985	0,5455	0,1669	0,4818
SIR	0,5815	0,0001	0,6131	0,0000		0.0070	-0,3477	0,0279	-0,7028	0,0000	-0,5645	0,0001	-0,3405	0,0315	0,0617	0,7962
DHG	0,1790	0,2691	0,2450	0,1275	-0,3477	0,0279			0,6916	0,0000	0,8544	0,0000	0,3480	0,0278	0,0737	0,7575
XYL	-0,1743	0,2821	-0,1250	0,4423	-0,7028	0,0000	0,6916	0,0000			0,8167	0,0000	0,3459	0,0288	0,0150	0,9498
PROT	0,0798	0,6244	0,1123	0,4903	-0,5645	0,0001	0,8544	0,0000	0,8167	0,0000			0,4352	0,0050	-0,0737	0,7575
NITRIF	-0,1096	0,5007	-0,0985	0,5455	-0,3405	0,0315	0,3480	0,0278	0,3459	0,0288	0,4352	0,0050			-0,0075	0,9749
N-MIN	0,1850	0,4350	0,1669	0,4818	0,0617	0,7962	0,0737	0,7575	0,0150	0,9498	-0,0737	0,7575	-0,0075	0,9749		
PME	0,4648	0,0025	0,4883	0,0014	0,8564	0,0000	-0,3812	0,0152	-0,6713	0,0000	-0,6483	0,0000	-0,4134	0,0080	0,7639	0,0001
PME-ICP	0,4389	0,0046	0,5078	0,0008	0,8928	0,0000	-0,3761	0,0168	-0,6982	0,0000	-0,6429	0,0000	-0,4631	0,0026	0,4602	0,0412
SULF	0,5667	0,0001	0,5808	0,0001	0,8210	0,0000	-0.1083	0,5061	-0,4792	0,0018	-0.3786	0,0160	-0,2473	0,1239	0,0797	0,7384
BAKT	0,7099	0,0000	0,7160	0,0000	0,6731	0,0000	0,1375	0,3974	-0,3586	0,0231	-0,0102	0,9501	-0.1608	0,3214	0,0090	0,9699
PILZE	0,0513	0,7532	0.1169	0,4725	-0,2782	0,0821	0,8356	0,0000	0,4928	0,0012	0,6558	0,0000	0,1908	0,2382	0,2150	0,3626
PH	0,0564	0,8133	-0,2414	0,3051	-0,4062	0,0756	-0,3671	0,1114	-0,2099	0,3745	-0,2249	0,3404	-0,0489	0,8378	-0,1895	0,4235
TS	0,0895	0,7075	-0,2339	0,3209	-0,4129	0,0704	-0,2384	0,3114	0,0083	0,9724	0,0165	0,9448	0,0030	0,9900	-0,1602	0,4998
os	0,0035	0,7647	0,2806	0,3203	0,5077	0,0223	0,1128	0,6358	-0,2001	0,3977	0,1173	0,6222	-0,0895	0,7075	-0,0218	0,4330
33	0,0710	0,7047	0,2000	0,2009	0,0077	0,0220	0,1120	0,0000	0,2001	0,0011	0,1173	0,0222	0,0090	0,7073	0,0210	0,0270

Parameter	PI	ME	PME	-ICP	SL	JLF	ВА	KT	PIL	.ZE	Р	Ή	Т	S	C)S
n	4	10	4	-0	4	10	4	-0	4	10	2	:0	2	0	2	20
Correlation	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert
ATM ATM-ICP SIR DHG XYL PROT NITRIF N-MIN	0,4648 0,4883 0,8564 -0,3812 -0,6713 -0,6483 -0,4134 0,7639	0,0025 0,0014 0,0000 0,0152 0,0000 0,0000 0,0080 0,0001	0,4389 0,5078 0,8928 -0,3761 -0,6982 -0,6429 -0,4631 0,4602	0,0046 0,0008 0,0000 0,0168 0,0000 0,0000 0,0026 0,0412	0,5667 0,5808 0,8210 -0,1083 -0,4792 -0,3786 -0,2473 0,0797	0,0001 0,0001 0,0000 0,5061 0,0018 0,0160 0,1239 0,7384	0,7099 0,7160 0,6731 0,1375 -0,3586 -0,0102 -0,1608 0,0090	0,0000 0,0000 0,0000 0,3974 0,0231 0,9501 0,3214 0,9699	0,0513 0,1169 -0,2782 0,8356 0,4928 0,6558 0,1908 0,2150	0,7532 0,4725 0,0821 0,0000 0,0012 0,0000 0,2382 0,3626	0,0564 -0,2414 -0,4062 -0,3671 -0,2099 -0,2249 -0,0489 -0,1895	0,8133 0,3051 0,0756 0,1114 0,3745 0,3404 0,8378 0,4235	0,0895 -0,2339 -0,4129 -0,2384 0,0083 0,0165 0,0030 -0,1602	0,7075 0,3209 0,0704 0,3114 0,9724 0,9448 0,9900 0,4998	0,0715 0,2806 0,5077 0,1128 -0,2001 0,1173 -0,0895 -0,0218	0,7647 0,2309 0,0223 0,6358 0,3977 0,6222 0,7075 0,9273
PME PME-ICP SULF BAKT PILZE PH TS	0,9668 0,7841 0,4766 -0,2885 -0,1083 -0,1986	0,0000 0,0000 0,0019 0,0710 0,6494 0,4013	0,9668 0,7569 0,4915 -0,2403 -0,4205 -0,6168	0,0000 0,0000 0,0013 0,1353 0,0649 0,0038	0,7841 0,7569 0,6660 -0,2231 -0,2144 0,0587	0,0000 0,0000 0,0000 0,1665 0,3641 0,8059	0,4766 0,4915 0,6660 0,1767 -0,2061 -0,2008	0,0019 0,0013 0,0000 0,2755 0,3833 0,3959	-0,2885 -0,2403 -0,2231 0,1767 -0,3091 -0,5175	0,0710 0,1353 0,1665 0,2755 0,1848 0,0194	-0,1083 -0,4205 -0,2144 -0,2061 -0,3091 0,5779	0,6494 0,0649 0,3641 0,3833 0,1848	-0,1986 -0,6168 0,0587 -0,2008 -0,5175 0,5779	0,4013 0,0038 0,8059 0,3959 0,0194 0,0076	-0,0128 0,5228 -0,0677 0,3054 0,3272 -0,4966 -0,7671	0,9573 0,0180 0,7767 0,1904 0,1591 0,0259 0,0001
TS OS	-0,1986 -0,0128	0,4013 0,9573	-0,6168 0,5228	0,0038 0,0180	0,0587 -0,0677	0,8059 0,7767		-0,2008 0,3054	, ,		.,	-,,	., , , , . , . , . , .	1 -7 7 7	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	

n=40: 10 Bäume je Beobachtungsfläche, untersucht 1993 und 2000, jeweils im Frühjahr und im Herbst n=20: 10 Bäume je Beobachtungsfläche, untersucht 2000, jeweils im Frühjahr und im Herbst

IT03 (Lavazé)

Parameter	A	TM	ATM	1-ICP	SII	₹	D	HG	X	YL	PR	ОТ	NIT	RIF	N-1	MIN
n	4	40	4	0	40)	4	10	4	10	4	10	4	0	2	20
Korrelation	R	p-Wert														
ATM			0,8137	0,0000	0,1561	0,3361	0,3711	0,0184	-0,6496	0,0000	-0,6508	0,0000	0,7144	0,0000	0,4752	0,0342
ATM-ICP	0,8137	0,0000			0,2432	0,1306	0,4003	0,0105	-0,4991	0,0010	-0,4975	0,0011	0,4913	0,0013	0,0135	0,9548
SIR	0,8606	0,0000	0,7662	0,0000		•	0,4210	0,0068	-0,6411	0,0000	-0,6699	0,0000	0,6955	0,0000	0,2962	0,2047
DHG	0,3711	0,0184	0,4003	0,0105	-0,6304	0,0000			0,0092	0,9548	-0,0285	0,8614	0,2785	0,0818	0,1744	0,4620
XYL	-0,6496	0,0000	-0,4991	0,0010	-0,7023	0,0000	0,0092	0,9548			0,9344	0,0000	-0,6650	0,0000	0,1429	0,5480
PROT	-0,6508	0,0000	-0,4975	0,0011	-0,6510	0,0000	-0,0285	0,8614	0,9344	0,0000			-0,6258	0,0000	0,1880	0,4274
NITRIF	0,7144	0,0000	0,4913	0,0013	-0,3252	0,0406	0,2785	0,0818	-0,6650	0,0000	-0,6258	0,0000			0,0947	0,6912
N-MIN	0,4752	0,0342	0,0135	0,9548	-0,0331	0,8899	0,1744	0,4620	0,1429	0,5480	0,1880	0,4274	0,0947	0,6912		
PME	0,8312	0,0000	0,6855	0,0000	0,8028	0,0000	0,2361	0,1425	-0,6756	0,0000	-0,6223	0,0000	0,7494	0,0000	-0,0030	0,9900
PME-ICP	0,8450	0,0000	0,6803	0,0000	0,8212	0,0000	0,2217	0,1691	-0,6656	0,0000	-0,6011	0,0000	0,7537	0,0000	-0,0662	0,7817
SULF	0,6971	0,0000	0,6569	0,0000	0,7977	0,0000	0,4033	0,0099	-0,5457	0,0003	-0,5135	0,0007	0,6914	0,0000	-0,3323	0,1523
BAKT	0,5910	0,0001	0,4865	0,0015	-0,0159	0,9226	0,2728	0,0885	-0,4824	0,0016	-0,4164	0,0075	0,3829	0,0148	-0,1188	0,6179
PILZE	-0,4287	0,0058	-0,4505	0,0035	-0,6773	0,0000	0,0006	0,9972	0,6122	0,0000	0,6512	0,0000	-0,5044	0,0009	0,1068	0,6541
PH	0,0308	0,8973	-0,1813	0,4444	0,2416	0,3047	-0,4378	0,0536	-0,0173	0,9423	0,2572	0,2736	0,1926	0,4160	0,3498	0,1306
TS	0,3640	0,1146	-0,1707	0,4717	0,1791	0,4500	-0,1046	0,6609	0,3520	0,1280	0,4302	0,0583	0,1309	0,5823	0,3926	0,0868
OS	-0,5154	0,0200	0,2167	0,3588	-0,2445	0,2989	0,0361	0,8798	-0,2912	0,2129	-0,3529	0,1270	-0,1889	0,4252	-0,6275	0,0031

Parameter	PI	ME	PME	-ICP	SL	JLF	BA	KT	PIL	_ZE	P	Ή	т	S	0	S
n	4	10	4	0	4	10	4	-0	4	Ю	2	:0	2	0	2	0
Korrelation	R	p-Wert														
ATM	0,8312	0,0000	0,8450	0,0000	0,6971	0,0000	0,5910	0,0001	-0,4287	0,0058	0,0308	0,8973	0,3640	0,1146	-0,5154	0,0200
ATM-ICP	0,6855	0,0000	0,6803	0,0000	0,6569	0,0000	0,4865	0,0015	-0,4505	0,0035	-0,1813	0,4444	-0,1707	0.4717	0,2167	0,3588
SIR	0,8303	0,0000	0,8162	0,0000	0,8030	0,0000	0,5268	0,0005	-0,5118	0,0007	-0,1978	0,4031	-0,1384	0,5606	0,1196	0,6154
DHG	0,2361	0,1425	0,2217	0,1691	0,4033	0,0099	0,2728	0,0885	0,0006	0,9972	-0,4378	0,0536	-0,1046	0,6609	0,0361	0,8798
XYL	-0,6756	0,0000	-0,6656	0,0000	-0,5457	0,0003	-0,4824	0,0016	0,6122	0,0000	-0,0173	0,9423	0,3520	0,1280	-0,2912	0,2129
PROT	-0,6223	0,0000	-0,6011	0,0000	-0,5135	0,0007	-0,4164	0,0075	0,6512	0,0000	0,2572	0,2736	0,4302	0,0583	-0,3529	0,1270
NITRIF	0,7494	0,0000	0,7537	0,0000	0,6914	0,0000	0,3829	0,0148	-0,5044	0,0009	0,1926	0,4160	0,1309	0,5823	-0,1889	0,4252
N-MIN	-0,0030	0,9900	-0,0662	0,7817	-0,3323	0,1523	-0,1188	0,6179	0,1068	0,6541	0,3498	0,1306	0,3926	0,0868	-0,6275	0,0031
PME			0,9795	0,0000	0,8141	0,0000	0,5528	0,0002	-0,5053	0,0009	0,0120	0,9598	0,0609	0,7986	-0,0504	0,8328
PME-ICP	0,9795	0,0000			0,7927	0,0000	0,5912	0,0001	-0,4346	0,0051	0,1820	0,4424	0,1910	0,4197	-0,1339	0,5735
SULF	0,8141	0,0000	0,7927	0,0000			0,4434	0,0042	-0,5518	0,0002	-0,3776	0,1007	-0,2527	0,2824	0,3062	0,1891
BAKT	0,5528	0,0002	0,5912	0,0001	0,4434	0,0042			-0,1180	0,4683	0,1504	0,5267	0,3302	0,1551	-0,2483	0,2911
PILZE	-0,5053	0,0009	-0,4346	0,0051	-0,5518	0,0002	-0,1180	0,4683			0,5528	0,0115	0,5303	0,0162	-0,4763	0,0338
PH	0,0120	0,9598	0,1820	0,4424	-0,3776	0,1007	0,1504	0,5267	0,5528	0,0115			0,6087	0,0044	-0,5104	0,0215
TS	0,0609	0,7986	0,1910	0,4197	-0,2527	0,2824	0,3302	0,1551	0,5303	0,0162	0,6087	0,0044			-0,9108	0,0000
os	-0,0504	0,8328	-0,1339	0,5735	0,3062	0,1891	-0,2483	0,2911	-0,4763	0,0338	-0,5104	0,0215	-0,9108	0,0000		

n=40: 10 Bäume je Beobachtungsfläche, untersucht 1993 und 2000, jeweils im Frühjahr und im Herbst n=20: 10 Bäume je Beobachtungsfläche, untersucht 2000, jeweils im Frühjahr und im Herbst

IT04 (Pomarolo)

Parameter	A ⁻	TM	ATM	1-ICP	S	IR	DI	⊣G	X	YL	PR	ОТ	NIT	RIF	N-1	MIN
n	4	10	4	10	4	0	4	10	4	10	4	Ю	4	0	2	20
Korrelation	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert	R	p-Wert
ATM			0,7253	0,0000	0,5815	0,0001	0,1606	0,3222	0,2163	0,1800	0,2193	0,1739	0,1693	0,2962	0,5925	0,0059
ATM-ICP	0,7253	0,0000	0,1.200	,	0.6131	0,0000	0.0702	0.6670	0,0964	0,5539	0,1897	0,2411	0,1550	0,3396	0,3880	0,0910
SIR	0,1561	0,3361	0,2432	0,1306	-,	•	-0,6304	0,0000	-0,7023	0,0000	-0,6510	0,0000	-0,3252	0,0406	-0,0331	0,8899
DHG	0,1606	0,3222	0,0702	0,6670	-0,3477	0,0279	,		0,7191	0,0000	0,8315	0,0000	0,3990	0,0108	-0,3609	0,1180
XYL	0,2163	0,1800	0,0964	0,5539	-0,7028	0,0000	0,7191	0,0000			0,7715	0,0000	0,4169	0,0074	0,5759	0,0079
PROT	0,2193	0,1739	0,1897	0,2411	-0,5645	0,0001	0,8315	0,0000	0,7715	0,0000			0,5194	0,0006	0,1414	0,5522
NITRIF	0,1693	0,2962	0,1550	0,3396	-0,3405	0,0315	0,3990	0,0108	0,4169	0,0074	0,5194	0,0006			0,2827	0,2272
N-MIN	0,5925	0,0059	0,3880	0,0910	0,0617	0,7962	-0,3609	0,1180	0,5759	0,0079	0,1414	0,5522	0,2827	0,2272		
PME	0,1273	0,4337	0,1840	0,2558	0,8564	0,0000	-0,7488	0,0000	-0,6741	0,0000	-0,7562	0,0000	-0,4104	0,0085	0,3429	0,1389
PME-ICP	0,1129	0,4881	0,2615	0,1032	0,8928	0,0000	-0,6639	0,0000	-0,6897	0,0000	-0,7049	0,0000	-0,4275	0,0059	-0,1729	0,4659
SULF	0,2865	0,0731	0,3514	0,0262	0,8210	0,0000	-0,4041	0,0097	-0,6477	0,0000	-0,4683	0,0023	-0,3191	0,0448	0,1023	0,6679
BAKT	0,4492	0,0036	0,3456	0,0289	0,6731	0,0000	0,1925	0,2340	-0,0136	0,9336	0,2363	0,1421	0,3504	0,0266	0,2165	0,3591
PILZE	0,0268	0,8695	0,0568	0,7275	-0,2782	0,0821	0,8486	0,0000	0,7398	0,0000	0,7717	0,0000	0,4264	0,0061	-0,5564	0,0108
PH	-0,3523	0,1277	-0,0534	0,8229	-0,4062	0,0756	0,6955	0,0007	-0,1761	0,4576	0,0354	0,8823	-0,2175	0,3569	-0,5977	0,0054
TS	-0,7035	0,0005	-0,1949	0,4103	-0,4129	0,0704	0,2265	0,3369	-0,3469	0,1340	-0,2649	0,2591	-0,1843	0,4365	-0,6185	0,0036
os	0,6739	0,0011	0,2640	0,2607	0,5077	0,0223	-0,4220	0,0639	0,4175	0,0670	0,2279	0,3338	0,2911	0,2131	0,7499	0,0001

Parameter	PI	ИΕ	PME	-ICP	SL	JLF	BA	KT	PII	LZE	Р	Ή	т	S	0	S
n	4	-0	4	-0	4	10	4	-0	4	10	2	:0	2	0	2	0
Korrelation	R	p-Wert														
ATM	0,1273	0,4337	0,1129	0,4881	0,2865	0,0731	0,4492	0,0036	0,0268	0,8695	-0,3523	0,1277	-0,7035	0,0005	0,6739	0,0011
ATM-ICP	0,1840	0,4557	0,2615	0,1032	0,3514	0,0262	0,3456	0,0289	0,0568	0,7275	-0,0534	0,8229	-0,1949	0,4103	0,2640	0,2607
SIR	0,8028	0,0000	0,8212	0,0000	0,7977	0,0000	-0,0159	0,9226	-0,6773	0,0000	0,2416	0,3047	0,1791	0,4500	-0,2445	0,2989
DHG	-0,7488	0,0000	-0,6639	0,0000	-0,4041	0,0097	0,1925	0,2340	0,8486	0,0000	0,6955	0,0007	0,2265	0,3369	-0,4220	0,0639
XYL	-0,6741	0,0000	-0,6897	0,0000	-0,6477	0,0000	-0,0136	0,9336	0,7398	0,0000	-0,1761	0,4576	-0,3469	0,1340	0,4175	0,0670
PROT	-0,7562	0,0000	-0,7049	0,0000	-0,4683	0,0023	0,2363	0,1421	0,7717	0,0000	0,0354	0,8823	-0,2649	0,2591	0,2279	0,3338
NITRIF	-0,4104	0,0085	-0,4275	0,0059	-0,3191	0,0448	0,3504	0,0266	0,4264	0,0061	-0,2175	0,3569	-0,1843	0,4365	0,2911	0,2131
N-MIN	0,3429	0,1389	-0,1729	0,4659	0,1023	0,6679	0,2165	0,3591	-0,5564	0,0108	-0,5977	0,0054	-0,6185	0,0036	0,7499	0,0001
PME			0,9062	0,0000	0,6879	0,0000	-0,2243	0,1640	-0,7537	0,0000	-0,2627	0,2631	-0,3770	0,1013	0,4874	0,0293
PME-ICP	0,9062	0,0000			0,7271	0,0000	-0,1883	0,2446	-0,6830	0,0000	0,6044	0,0048	0,0760	0,7501	0,0196	0,9348
SULF	0,6879	0,0000	0,7271	0,0000			0,1216	0,4549	-0,5803	0,0001	0,1468	0,5369	-0,3634	0,1152	0,2520	0,2838
BAKT	-0,2243	0,1640	-0,1883	0,2446	0,1216	0,4549			0,1386	0,3938	-0,2281	0,3335	-0,2874	0,2191	0,2903	0,2143
PILZE	-0,7537	0,0000	-0,6830	0,0000	-0,5803	0,0001	0,1386	0,3938			0,6218	0,0034	0,6960	0,0007	-0,6130	0,0041
PH	-0,2627	0,2631	0,6044	0,0048	0,1468	0,5369	-0,2281	0,3335	0,6218	0,0034			0,5800	0,0073	-0,5821	0,0071
TS	-0,3770	0,1013	0,0760	0,7501	-0,3634	0,1152	-0,2874	0,2191	0,6960	0,0007	0,5800	0,0073			-0,9003	0,0000
os	0,4874	0,0293	0,0196	0,9348	0,2520	0,2838	0,2903	0,2143	-0,6130	0,0041	-0,5821	0,0071	-0,9003	0,0000		

n=40: 10 Bäume je Beobachtungsfläche, untersucht 1993 und 2000, jeweils im Frühjahr und im Herbst n=20: 10 Bäume je Beobachtungsfläche, untersucht 2000, jeweils im Frühjahr und im Herbst

4 ZUSAMMENFASSUNG

4.1 Einfluss der Dauerbeobachtungsflächen

Sowohl der Nitrifikationsumsatz als auch die N-Mineralisation waren in den Böden aller vier Beobachtungsflächen vergleichbar. Eine Reihe von bodenbiologischen Aktivitäten (Atmung - unabhängig von der Bestimmungsmethode, Sulfataseaktivität, Gesamtkeimzahl an Bakterien und Pilzen) war jedoch in den Flächen IT03 (Lavazè) und IT01 (Ritten) signifikant geringer als in der Fläche IT02 (Montiggl). Die Fläche IT04 (Pomarolo) wies die höchsten Aktivitäten auf.

Diesem Trend folgte auch die Xylanase- und Proteaseaktivität, mit dem Unterschied, dass die Flächen IT04 (Pomarolo) und IT02 (Montiggl) vergleichbare Aktivitäten hatten. Auch die saure Phosphataseaktivität (unabhängig von der Bestimmungsmethode) war in der Fläche IT03 (Lavazè) am geringsten, die Aktivitäten der anderen drei Flächen unterschieden sich allerdings nicht signifikant. Die Dehydrogenaseaktivität und die Biomasse (SIR) waren ebenfalls in der Fläche IT03 (Lavazè) am niedrigsten ausgeprägt; die SIR war in der Fläche IT02 (Montiggl) am höchsten, während die höchste Dehydrogenaseaktivität allerdings in der Fläche IT04 (Pomarolo)gemessen wurde. Der gleiche Trend (IT03 < IT01 < IT02 < IT04) galt für den pH-Wert und den Gehalt an Trockensubstanz; dem genau entgegengesetzt war der Gehalt an organischer Substanz.

Niedrige Biomassegehalte und niedrige Enzymaktivitäten und damit geringe Stoffumsetzungsraten an den Standorten IT01 (Ritten) und IT03 (Lavazè) sind für subalpine Böden charakteristisch. Niedrige Temperaturen, saures Boden-pH und schwer abbaubarer Rohhumus mit weitem C/N-Verhältnis sind die Hauptursachen dieser Phänomene. Wesentlich günstiger für mikrobielle Stoffumsetzungen sind die Nährstoff- und Klimabedingungen an den Standorten IT02 (Montiggl) und IT04 (Pomarolo).

4.2 Einfluss des Untersuchungsjahres

Eine Reihe von bodenbiologischen Aktivitäten (Atmung und Phosphataseaktivität - jeweils unabhängig von der Bestimmungsmethode, Biomasse, Sulfataseaktivität) war im Jahr 1993 signifikant niedriger als im Jahr 2000. Diese Aktivitätszunahme konnte auch für jede der vier Dauerbeobachtungsflächen nachgewiesen werden, mit Ausnahme der Atmung, die nur in der Fläche IT04 (Pomarolo) 1993 mit 2000 vergleichbar war.

Einen gegenläufigen Trend wiesen die Aktivitäten der Dehydrogenase, Xylanase und Protease sowie die Gesamtkeimzahl an Pilzen auf. Diese Parameter hatten im Jahr 2000 im Vergleich zum Untersuchungsjahr 1993 signifikant abgenommen. Die Gesamtkeimzahl an Bakterien sowie der Nitrifikationsumsatz waren 1993 und 2000 nicht signifikant verschieden. Dieses Ergebnis galt jedoch nicht für alle vier Flächen.

Der Anstieg der mikrobiellen Biomasse (SIR) und der Bodenatmung (Netto-Mineralisation) in den Dauerbeobachtungsflächen seit 1993 kann auf verschiedene Ursachen zurückgeführt werden. Ein Argument wäre eine erhöhte Netto-Mineralisation infolge höherer Phytomasseproduktion und damit erhöhtem Streuanfall als Folge der diskutierten Klimaerwärmung und höherer CO₂-Partialdrucke. Diese Hypothese kann mit Berichtlegung nicht bestätigt werden, da uns die Daten der Phytomasseproduktion, der atmosphärischen CO₂-Gehalte und der Temperaturen der vier Beobachtungsflächen für den Zeitraum 1993 bis 2000 nicht zur Verfügung standen.

An Hand uns vorliegender Messdaten erhebt sich jedoch der Verdacht, dass der Effekt der Einzäunung der Versuchsflächen einen größeren Einfluss hatte als der CO₂-Zuwachs in der Atmosphäre. Durch die Einzäunung wurden Wildäsung und Beweidung ausgeschlossen und damit ein ungestörtes Pflanzenwachstum des Unterwuchses gefördert. Phytomassedaten des Unterwuchses könnten diese Hypothese bestätigen.

Es ist auch nicht auszuschließen, dass eine vorübergehende Anhäufung leicht zersetzbarer pflanzlicher Streu infolge ungünstiger Klimaentwicklungen (Trockenheit) in den Jahren 1999 und 2000 zu einer höheren Versorgung der Bodenmikroflora mit Nährsubstrat führte. Im standardisierten Laborexperiment zur Bestimmung der Netto-Mineralisation machte sich die erhöhte Verfügbarkeit von Nährsubstrat durch eine höhere Atmungs-(Mineralisations-)aktivität bemerkbar.

Die Abnahme bodenenzymatischer Aktivitäten (Dehydrogenase, Xylanase, Protease) wird auf eine geringere Enzymbildung durch Bodenmikroorganismen infolge ungünstiger klimatischer Bedingungen (Trockenheit) in den Jahren 1999 und 2000 zurückgeführt. Auch der Anstieg der sauren Phosphataseaktivität an den vier Standorten, der auf eine abnehmende Verfügbarkeit von Phosphor hinweist, ist auf die gleichen klimatischen Effekte zurückzuführen. Inwieweit eine Abnahme pflanzlicher und tierischer Streu die Ursache für diese veränderten Enzymaktivitäten sind, müßte durch Vergleiche mit Messdaten des Biomassezuwachses und Streuanfalls bei Pflanzen (Unterwuchs, Bäume) und Bodentieren erhoben werden (zur Zeit der Berichterstellung standen uns die entsprechenden Daten nicht zur Verfügung). Eigene Messergebnisse zur mikrobiellen Biomasse und Bodenatmung lassen auf eine höhere Verfügbarkeit von

Nährsubstraten infolge Zunahme pflanzlicher Streu in den Versuchsflächen IT01 (Ritten), IT02 (Montiggl) und IT03 (Lavazè) schließen. Mit den zur Verfügung stehenden Messdaten kann nicht beurteilt werden, ob eine vorübergehende Anhäufung von Streu infolge ungünstiger Klimabedingungen oder eine über die vergangenen sieben Jahre erfolgte kontinuierliche Zunahme des Streuanfalls die kausale Ursache darstellt. Messdaten über den Biomassezuwachs bei Bäumen und Unterwuchs, Gehalte an bodenorganischer Substanz und Klimadaten von sämtlichen vier Standorten würden die Aufklärung des Sachverhaltes ermöglichen.

Die vorliegenden Messergebnisse schließen nicht aus, dass 2000 im Vergleich zum Untersuchungsjahr 1993 auch eine für mikrobielle Stoffumsetzungen schlechtere Streuqualität vorlag. Eine Bestätigung dieser Hypothese würde die Bereitstellung umfangreicher chemischer Analysen der Streu und der bodenorganischen Substanz erfordern.

4.3 Einfluss der Jahreszeit

Der Mehrheit der bodenbiologischen und -enzymatischen Untersuchungen zufolge bestand kein signifikanter Unterschied zwischen den mikrobiellen Aktivitäten im Frühjahr und im Herbst. Dies galt für die Bodenatmung (ICP-Methode), den Nitrifikationsumsatz, die Dehydrogenase-, saure Phosphatase- (pH 6,5) und Sulfataseaktivität sowie für die Gesamtkeimzahl an Pilzen. Auch die Biomasse (SIR) und die Gesamtkeimzahl an Bakterien waren (den Tests für nicht parametrische Daten zufolge) im Frühjahr nicht höher als im Herbst. Dieses Ergebnis wurde auch in statistischen Detailuntersuchungen an den vier Dauerbeobachtungsflächen bestätigt, d.h. in jeder der vier Flächen waren die im Frühjahr gemessenen Aktivitäten nicht signifikant unterschiedlich von den im Herbst gemessenen. Die untersuchten bodenchemischen und - physikalischen Parameter (pH-Wert, Gehalt an Trockensubstanz und organischer Substanz) bestätigten diesen Trend.

Die N-Mineralisation sowie die Bodenatmung (Jäggi-Methode) waren im Frühjahr signifikant höher als im Herbst. Dieser Trend konnte in Detailuntersuchungen jedoch nur für die Fläche IT02 (Montiggl) und IT04 (Pomarolo) bestätigt werden.

Lediglich die Aktivitäten der Xylanase und der sauren Phosphatase (pH 5, ICP-Methode) waren im Frühjahr signifikant niedriger als im Herbst. Dies konnte für alle vier Flächen nachgewiesen werden.

Der statistisch gesehen nicht erfassbare Einfluss der Jahreszeiten (Probenahmetermine im Frühjahr und Herbst) der meisten Parameter sind auf die sich nur geringfügig ändernden

Substratqualitäten innerhalb eines Jahres zurückzuführen, sowie auf konservative Regelmechanismen innerhalb einzelner Abbauwege und zwischen den Stoffkreisläufen. Hinzu kommt die Immobilisierung von Bodenmikroorganismen und Bodenenzymen an Humus- und Tonkolloide, die eine sehr effiziente Schutzwirkung gegen biotische, chemische und physikalische Angriffe ausüben.

Markante Ausnahmen bildeten lediglich die Xylanase- und saure Phosphataseaktivität der untersuchten Böden. Der signifikante Anstieg der Xylanaseaktivität gegen den Herbst hin erklärt sich aus dem stark zunehmenden Streuanfall der ausklingenden Vegetationsperiode. Die Xylanaseaktivität steigt induktiv, da sie am primären Angriff der Streu beteiligt ist. Auch die saure Phosphataseaktivität steigt gegen den Herbst hin an, da durch Phosporzehrung währen der Vegetationsperiode der entstehende Mangel durch Steigerung der Enzymaktivität ausgeglichen werden muss.

5 SUMMARY

5.1 Effect of sites

Both nitrification turnover and N-mineralization were comparable in the soils of all four investigated sites. A range of soil biological activities (respiration - independent of the determination method, sulfatase activity, numbers of heterotrophic bacteria and fungi) was significantly lower in the sites IT03 (Lavazè) and IT01 (Ritten) than in the other two sites. The site IT04 (Pomaralo) showed the highest activities.

Activities of xylanase and protease showed the same trend, whereby activities were comparable in the sites IT04 (Pomarolo) and IT02 (Montiggl). Also acidic phosphatase activity (independent of the determination method) was lowest in the site IT03 (Lavazè), activities in the other three sites were almost comparable. Similarly, dehydrogenase activity and biomass (SIR) were lowest in the site IT03 (Lavazè). SIR was highest in the site IT02 (Montiggl), whereas the highest dehydrogenase activity was measured in the site IT04 (Pomarolo). The same trend (IT03 < IT01 < IT02 < IT04) resulted for soil pH and soil dry matter content; the content of soil organic matter was opposite.

Low biomass contents and low enzyme activities, and thus low metabolic rates in the sites IT01 (Ritten) and IT03 (Lavazè) are characteristic for subalpine soils. Low temperatures, acidic soil pH and recalcitrant raw humus with a wide C/N-ratio are the main reasons. Nutrient and climate conditions in the sites IT02 (Montiggl) and IT04 (Pomarolo) are more favorable for microbial substrate conversions.

5.2 Effect of the year of investigations

A series of soil biological activities (respiration and phosphatase activity - both independent of the determination method, biomass, sulfatase activity) were significantly lower in 1993 than in 2000. This activity increase was noted in each of the four sites, with the exception of a comparable respiration in 1993 and 2000 in the site IT04 (Pomarolo).

An opposite trend showed activities of dehydrogenase, xylanase and protease, as well as the number of fungi. These parameters had significantly decreased in 2000 as compared to 1993. The number of hetrotrophic bacteria and nitrification turnover were not significantly different in 1993 and 2000. However, this result could not be confirmed for each site.

There are several reasons for the increase in microbial biomass (SIR) and soil respiration (net-mineralization) in the four sites since 1993. One reason could be the increased net-mineralization due to a higher phytomass production, and thus higher litter production, as a consequence of the climate change (rise in temperature and CO_2 partial pressure). This hypothesis cannot be confirmed at this time, as data about phytomass production, atmospheric CO_2 contents and temperatures of the four sites during the period between 1993 and 2000 are not available to us.

From our data it could be deduced that fencing of the areas had a greater influence than atmospheric CO₂ increase. Due to fencing, game food and grazing were no longer possible, which favored undisturbed plant growth of underwood.

It is also conceivable that the short-term accumulation of easily decomposable plant litter, due to unfavorable climate conditions (dryness) in the years 1999 and 2000, caused a better supply of the soil microflora with nutrients. In our standardized laboratory experiments for the determination of the net-mineralization an enhanced substrate availability was noted via a higher respiration (mineralization) activity.

The decrease of soil enzyme activities (dehydrogenase, xylanase, protease) is the result of a lower microbial enzyme production due to unfavorable climate conditions (dryness) in the years 1999 and 2000. The increase of acidic phosphatase activity in the four sites, which points to the decreasing phosphorus availability, can also be attributed to the these climate effects. A comparison with data about the phytomass increase and plant litter content (underwood, trees) and about soil animals would be necessary in order to determine to which extent the decrease of plant and animal litter could be the reason for these changed enzyme activities (at the time of writing of this report we had no access to these data). Increased microbial biomass and soil respiration point to a higher nutrient availability due to the increase of plant litter in the sites IT01 (Ritten), IT02 (Montiggl) and IT03 (Lavazè). However, we cannot judge whether the reason is a short-term litter accumulation, due to unfavorable climate conditions, or a continuous litter increase during the past seven years. Data on biomass increase of trees and underwood, on contents of soil organic matter and on climates of all four sites would help to elucidate the facts. From our data it cannot be excluded that the litter quality was lower in 2000 than in 1993. The extensive chemical analysis of litter and soil organic matter would be required for the confirmation of this hypothesis.

5.3 Effect of season

According to a wide range of soil biological and enzymatic investigations, there was no significant difference between microbial activities in spring and in autumn. This concerned soil respiration (ICP method), nitrification turnover, dehydrogenase, acidic phosphatase (pH 6,5) and sulfatase acivity as well as the number of fungi. It was also valid for biomass (SIR) and the number of heterotrophic bacteria (according to statistical tests for non-parametric data). This result was confirmed for each site, i.e. in each of the four sites activities measured in spring were not significantly higher than activities measured in autumn. The investigated soil chemical and physical parameters (soil pH, soil dry matter, organic matter content) corroborated this trend.

Both N-mineralization and soil respiration (Jäggi method) were significantly higher in spring than in autumn. Detailed investigations, however, demonstrated that this fact was only valid for the sites IT02 (Montiggl) and IT04 (Pomarolo).

Only activities of xylanase and acidic phosphatase (pH 5, ICP method) were significantly lower in spring than in autumn. This could be confirmed for each site.

The statistically not detectable influence of season (soil sampling in spring and autumn) on most of the measured parameters can be attributed to substrate qualities that change not significantly within the year, as well as to conservative mechanisms within the degradation pathways and between nutrient cycles. Additionally, the immobilization of soil microorganisms and soil enzymes onto humus and clay colloids confers a very efficient protection against biotic, chemical and physical attacks.

Among the investigated parameters, xylanase and acidic phosphatase activity of the investigated soils were the only striking exceptions. The significant increase of xylanase activity in autumn can be explained by the increasing litter production during the ending vegetation period. The increase of xylanase activity is induced, because this enzyme takes part of the primary attack on litter. Also acidic phosphatase activity was increased in autumn, since the lack of phosphorus during the vegetation period had to be balanced via the increase of enzyme activity.

ANHANG: Messdaten der untersuchten Parameter in den vier Dauerbeobachtungsflächen in den Jahren 1993 und 2000 (F = Frühjahr, H = Herbst).

Fläche		Jahr	Zeit	Probe :	= Parallele	ATM	ATM- ICP	SIR	DHG	XYL	PROT	NITRIF	N-MIN	PME	PME-ICP	SULF	BAKT	PILZE	PH	TS	OS
IT01 I	R 1	1993	F	R2	1	0.600	0.020	120 40	24.40	8200,00	210.00	0.005		740,00	22.25	70.00	2.095.06	1,14E+06			
—		1993	F	R3		0,690 1,230	0,039 0,047	139,40	24,40		310,00	0,005		•	-22,25	70,00	3,08E+06 1,29E+06	7,94E+05			
		1993	F	R4	3	0,460	0,047	369,30 158,70	93,40 29,20	7600,00 7200,00	420,00 260,00	0,003		1590,00 460,00	11,15 -33,25	130,00 90,00	4,03E+05	6,47E+05			
—	_	1993	F	R6	4	0,460	0,030	183,90	56,90	5300,00	310,00	-0,041		1580,00	10,76	100,00	2,37E+06	7,89E+05			
IT01 I		1993	F	R7	5	1,080	0,041	244,90	168,60	3000,00	300,00	0,012		2030,00	28,44	80,00	6,48E+06	3,07E+06			
—		1993	F	R8	6	1,300	0,043	314,70	153,30	3300,00	170,00	0,012		1550,00	9,58	420,00	8,67E+06	5,54E+05			
		1993	F	R12	7	0,870	0,040	243,80	66,90	5700,00	260,00	0,007		1630,00	12,72	200,00	2,78E+06	1,14E+06			
		1993	F	R24	8	0,340	0,042	81,80	20,30	4400,00	220,00	0,007		430,00	-34,43	80,00	3,60E+06	7,63E+05			
		1993	F	R25	9	0,390	0,034	130,70	29,60	8200,00	220,00	0,000		610,00	-27,35	80,00	3,92E+05	1,59E+05			
	_	1993	F	R29	10	1,190	0,047	452,10	1619,00	3600,00	11860,00	0,033		1390,00	3,29	1050,00	3,03E+07	3,66E+06			
		.000	-	0	. •	.,	0,0	.02,.0	,	3333,53		0,000				.000,00	0,002:0:	0,002:00			
IT02 I	M 1	1993	F	M1	1	2,100	0,061	1178,70	97,00	68600,00	2750,00	0,114		1100,00	-8,10	400,00	2,11E+07	1,49E+06			
		1993	F	M2	2	3,980	0,090	1145,30	752,90	19400,00	10560,00	0,019		2030,00	28,44	350,00	1,04E+08	2,09E+07			
—		1993	F	M4	3	1,810	0,056	731,20	1087,70	11200,00	2330,00	0,097		1280,00	-1,03	360,00	2,75E+07	8,17E+06			
		1993	F	M9	4	1,900	0,058	1027,10	1302,90	17000,00	10210,00	0,010		1310,00	0,15	680,00	4,90E+07	8,40E+06			
IT02 I		1993	F	M10	5	1,980	0,059	538,60	309,10	23700,00	2880,00	0,038		660,00	-25,39	170,00	1,25E+07	3,30E+06			
IT02 I	_	1993	F	M13	6	2,290	0,064	986,70	1292,60	13900,00	8790,00	0,082		1460,00	6,04	630,00	3,55E+07	8,00E+06			
IT02 I	M 1	1993	F	M15	7	2,260	0,063	1108,40	1675,80	21600,00	8760,00	0,007		1250,00	-2,21	550,00	8,41E+07	2,70E+07			
IT02	M 1	1993	F	M16	8	3,170	0,077	1384,10	1835,30	21100,00	10770,00	0,119		1420,00	4,47	490,00	1,25E+08	3,51E+07			
IT02 I	M 1	1993	F	M17	9	1,640	0,054	515,70	291,10	19800,00	1410,00	0,081		920,00	-15,17	120,00	1,65E+07	4,06E+06			
IT02 I	M 1	1993	F	M19	10	0,550	0,037	94,40	8,10	22400,00	410,00	0,013		420,00	-34,82	20,00	1,20E+06	4,66E+05			
IT03 I	L 1	1993	F	L3	1	0,430	0,035	329,20	22,00	10090,00	280,00	0,005		1090,00	-8,49	160,00	5,42E+05	9,17E+05			
IT03 I	L 1	1993	F	L5	2	0,210	0,032	182,30	0,00	9710,00	240,00	0,004		560,00	-29,32	100,00	2,97E+05	1,16E+05			
IT03 I	L 1	1993	F	L8	3	0,700	0,039	156,20	8,00	8950,00	230,00	0,004		590,00	-28,14	80,00	1,56E+06	3,44E+04			
IT03 I	L 1	1993	F	L10	4	0,680	0,039	98,50	3,00	9360,00	220,00	0,003		500,00	-31,68	20,00	4,22E+05	1,22E+04			
IT03 I	L 1	1993	F	L12	5	0,190	0,031	150,50	11,90	9230,00	200,00	0,003		400,00	-35,60	70,00	8,05E+05	1,15E+05			
IT03 I	L 1	1993	F	L14	6	0,500	0,036	138,50	11,60	11320,00	220,00	0,006		370,00	-36,78	80,00	5,80E+05	2,32E+04			
IT03 I		1993	F	L19	7	0,320	0,033	94,20	0,00	7150,00	190,00	0,003		350,00	-37,57	30,00	2,78E+05	7,88E+03			
IT03 I				L20	8	0,370	0,034	76,50	0,00	6200,00	160,00	0,002		370,00	-36,78	20,00	1,24E+06	4,52E+05			
IT03 I	_	1993	F	L22	9	0,370	0,034	117,60	7,00	9780,00	250,00	0,005		480,00	-32,46	50,00	3,84E+05	1,74E+05			
IT03 I	L 1	1993	F	L24	10	0,410	0,035	82,60	0,00	6700,00	180,00	0,004		410,00	-35,21	20,00	8,97E+05	7,91E+04			
IT04		1993		P1	1	4,120	0,092	1400,90	2700,30	3760,00	6890,00	0,019		2090,00	30,80	2350,00	4,35E+08	1,02E+08			
IT04 I			F	P2	2	2,680	0,070	1509,40	3101,90	3250,00	5580,00	0,045		1690,00	15,08	2120,00	5,53E+08	1,58E+07			
-			F	P4	3	2,450	0,066	811,10	3982,90	3500,00	6300,00	0,451		1430,00	4,86	3280,00	1,45E+08	6,73E+07			
1		1993	F	P7	4	1,590	0,053	1232,10	2525,00	3280,00	6040,00	0,022		2210,00	35,51	1840,00	6,00E+07	2,10E+07			
IT04		1993	F	P10	5	2,850	0,072	1229,90	3060,80	5690,00	3770,00	0,006		2790,00	58,30	1560,00	1,46E+08	6,14E+07			
			F	P15	6	1,650	0,054	469,50	593,80	18880,00	6350,00	0,503		330,00	-38,35	470,00	1,45E+08	1,99E+07			
IT04 I			F	P17	7	2,420	0,066	1483,20	2480,00	7160,00	3730,00	0,017		560,00	-29,32	1600,00	2,57E+08	7,16E+07			
IT04 I		1993	<u>F</u>	P18	8	5,030	0,106	1537,10	3046,10	3300,00	6570,00	0,025		2420,00	43,76	2250,00	1,02E+08	6,34E+07			
			F	P27	9	4,350	0,095	2535,50	8059,10	4690,00	11100,00	0,047		3990,00	105,45	6660,00	1,29E+08	2,03E+07			
IT04 I	P 1	1993	F	P28	10	2,220	0,063	887,80	1107,80	19360,00	2100,00	0,016		420,00	-34,82	620,00	7,96E+07	2,27E+07			

Fläche	9 .	Jahr	Zeit	Probe =	= Parallele	АТМ	ATM- ICP	SIR	DHG	XYL	PROT	NITRIF	N-MIN	PME	PME-ICP	SULF	BAKT	PILZE	PH	TS	OS
IT01	R 1	1993	Н	R2	1	0,380	0,034	116,30	15,00	11500,00	510,00	0,002		940,00	-14,39	130,00	5,55E+05	1,94E+05			
		1993	Н	R3	2	1,090	0,045	270,20	161,30	22000,00	1520,00	-0,001		1610,00	11,94	360,00	4,19E+05	3,39E+05			
		1993	Н	R4	3	0,700	0,039	231,40	8,10	15100,00	600,00	0,003		920,00	-15,17	200,00	5,06E+05	1,31E+06			
IT01		1993	Н	R6	4	0,570	0,037	165,90	27,50	15600,00	1220,00	-0,030		1580,00	10,76	180,00	2,12E+05	6,36E+04			
IT01		1993	Н	R7	5	0,660	0,039	216,30	63,00	17700,00	1370,00	0,003		1760,00	17,83	470,00	6,21E+05	1,96E+05			
1		1993	Н	R8	6	0,370	0,034	79,30	43,90	13700,00	740,00	0,036		1100,00	-8,10	200,00	4,52E+06	2,26E+04			-
_		1993	Н	R12	7	0,570	0,037	130,50	40,70	17700,00	660,00	0,004		1220,00	-3,39	310,00	4,53E+05	1,40E+05			
IT01		1993	Н	R24	8	0,430	0,035	163,00	26,60	17200,00	720,00	0,001		840,00	-18,32	310,00	7,07E+05	2,14E+05			
IT01	R 1	1993	Н	R25	9	0,560	0,037	253,30	112,60	20700,00	1120,00	0,000		1400,00	3,69	410,00	5,30E+05	4,19E+05			
IT01	R 1	1993	Н	R29	10	0,350	0,034	99,70	229,20	13300,00	910,00	0,020		1200,00	-4,17	470,00	3,42E+06	7,46E+05			
						,	•	•	,	•	,	,		,	,	,	,	,			
IT02	M 1	1993	Н	M1	1	0,880	0,042	306,30	949,10	58400,00	3530,00	0,021		1280,00	-1,03	710,00	2,30E+07	6,80E+06			
IT02		1993	Н	M2	2	2,280	0,063	631,10	1136,70	55300,00	3340,00	0,005		2590,00	50,44	530,00	2,70E+07	2,60E+07			
IT02	M 1	1993	Н	M4	3	1,200	0,047	545,80	439,40	48400,00	1930,00	0,003		1710,00	15,87	320,00	1,10E+07	7,80E+06			
IT02	M 1	1993	Н	М9	4	1,890	0,057	1062,00	2203,80	35900,00	5500,00	0,531		1410,00	4,08	780,00	2,20E+07	1,30E+07			
IT02	M 1	1993	Н	M10	5	1,300	0,048	516,80	286,80	27600,00	2660,00	-0,023		1500,00	7,62	160,00	3,80E+06	3,80E+06			
IT02	M 1	1993	Н	M13	6	1,870	0,057	771,30	1181,20	48800,00	6180,00	0,012		1860,00	21,76	540,00	1,70E+07	8,00E+06			
IT02	M 1	1993	Н	M15	7	1,640	0,054	846,10	1609,20	52200,00	4100,00	0,019		2140,00	32,76	910,00	2,30E+07	2,00E+07			
IT02	M 1	1993	Н	M16	8	2,550	0,068	1120,40	2186,70	53100,00	5540,00	0,025		2170,00	33,94	770,00	1,60E+07	1,20E+07			
IT02	M 1	1993	Н	M17	9	0,870	0,042	458,30	274,50	31000,00	1480,00	0,029		1390,00	3,29	210,00	2,80E+06	3,50E+06			
IT02	M 1	1993	Н	M19	10	0,310	0,033	90,90	2,80	14700,00	380,00	0,008		900,00	-15,96	50,00	7,40E+05	4,90E+05			
						·		·	·	•	·	·			·		•	·			
IT03	L 1	1993	Н	L3	1	0,790	0,041	297,60	45,90	18340,00	730,00	0,004		1110,00	-7,71	520,00	4,34E+05	2,90E+05			
IT03	L 1	1993	Н	L5	2	0,360	0,034	203,70	8,10	10240,00	270,00	0,004		470,00	-32,85	260,00	9,30E+04	5,33E+04			
IT03	L 1	1993	Н	L8	3	0,230	0,032	87,70	0,00	9960,00	250,00	0,003		330,00	-38,35	240,00	2,13E+05	2,66E+04			
IT03	L 1	1993	Н	L10	4	0,320	0,033	63,00	0,00	9510,00	290,00	0,003		600,00	-27,75	80,00	1,53E+05	2,00E+04			
IT03	L 1	1993	Н	L12	5	0,530	0,037	197,40	26,50	21990,00	660,00	0,004		780,00	-20,67	440,00	1,17E+06	1,55E+06			
IT03		1993	Н	L14	6	0,260	0,032	71,70	24,10	12030,00	360,00	0,004		310,00	-39,14	160,00	3,66E+05	6,22E+04			
IT03		1993	Н	L19	7	0,240	0,032	41,50	0,00	8250,00	230,00	0,003		300,00	-39,53	60,00	4,40E+04	1,98E+04			
IT03	L 1	1993	Н	L20	8	0,250	0,032	61,80	0,00	7870,00	220,00	0,003		410,00	-35,21	50,00	1,02E+05	1,36E+04			
IT03			Н	L22	9	0,290	0,033	65,70	0,00	12850,00	430,00	0,006		670,00	-25,00	150,00	5,56E+04	1,39E+05			
IT03	L 1	1993	Н	L24	10	0,280	0,033	90,80	4,30	10980,00	220,00	0,005		340,00	-37,96	100,00	4,48E+04	3,36E+03			
IT04	P 1	1993	Н	P1	1	4,180	0,093	2579,80	1950,20	58630,00	5040,00	0,100		2430,00	44,15	3010,00	3,90E+08	5,30E+07			
		1993	Н	P2	2	2,050	0,060	1869,80	3265,40	59930,00	7310,00	0,047		2280,00	38,26	3340,00	5,50E+07	6,10E+07			
-		1993	Н	P4	3	4,000	0,090	1529,30	3266,80	52820,00	6780,00	0,064		2280,00	38,26	3960,00	1,15E+08	8,20E+07			
-		1993	Н	P7	4	3,060	0,075	1808,40	3596,90	48030,00	6220,00	-0,061		2450,00	44,94	2010,00	3,40E+07	4,15E+07			
—		1993	Н	P10	5	1,990	0,059	934,30	1041,10	38260,00	4430,00	0,008		2230,00	36,30	550,00	4,70E+07	5,10E+07			
		1993	Н	P15	6	2,240	0,063	870,30	844,00	37960,00	4380,00	-0,133		1690,00	15,08	430,00	2,90E+07	1,70E+07			
IT04		1993	Н	P17	7	2,820	0,072	1474,60	1543,40	66780,00	3920,00	-0,023		2980,00	65,76	1740,00	1,90E+07	3,03E+07			
—		1993	Н	P18	8	4,560	0,098	1790,70	2005,70	68350,00	5400,00	0,122		2510,00	47,30	2300,00	6,65E+07	9,40E+07			
IT04		1993	Н	P27	9	2,980	0,074	1888,30	3434,50	43240,00	6610,00	0,341		1870,00	22,15	3500,00	1,10E+08	1,20E+08			
		1993	Н	P28	10	2,070	0,060	1281,00	1634,80	57570,00	5840,00	0,014		2500,00	46,91	1470,00	2,06E+07	1,90E+07			
				-	-	,	,	- ,	- ,	1	- ,	-,		,	- 1	- ,	,	,			

							ATM-														
Fläch	е	Jahr	Zeit	Probe = Para	llele	ATM	ICP	SIR	DHG	XYL	PROT	NITRIF	N-MIN	PME	PME-ICP	SULF	BAKT	PILZE	PH	TS	os
IT01		2000	F	R2 1		1,645	0,053	3416,99	12,65	162,06	25,24	0,122	8,618	24127,92	1030,08	425,33	2,12E+06	2,20E+04	3,07	54,5	67,6
IT01		2000	F	R3 2	-	1,440	0,053	3006,58	12,56	146,41	25,01	0,157	8,185	28041,54	1301,55	500,40	6,34E+06	8,74E+03	2,83	50,4	61,3
IT01		2000	F	R4 3		1,406	0,044	3312,59	16,48	133,04	27,16	0,258	5,975	18926,72	641,42	903,52	4,31E+06	2,77E+03	2,99	55,8	32,4
IT01		2000	F	R6 4		0,959	0,055	2725,45	32,63	143,70	47,50	-0,195	1,642	29774,69	762,05	1067,19	3,21E+06	8,03E+03	3,5	63,7	17,6
IT01		2000	F	R7 5		1,699	0,064	3550,26	27,62	192,11	52,38	0,235	5,863	39343,71	1492,40	1016,43	2,00E+06	1,33E+04	3,05	62,5	33,6
IT01		2000	F	R8 6		1,792	0,049	3895,65	26,71	196,40	46,58	0,153	6,374	52718,01	1898,65	1149,84	3,11E+06	6,37E+03	3,37	66,4	18,9
IT01		2000	F	R12 7		1,225	0,040	2603,04	16,84	152,20	15,31	0,178	9,031	18359,18	747,22	167,25	1,08E+06	1,83E+04	2,83	46,3	86,2
IT01		2000	F	R24 8	-	1,024	0,067	3368,12	35,27	215,77	61,78	-0,422	3,021	34511,90	1279,73	2056,77	2,31E+07	1,10E+03	3,29	63,0	14,4
IT01		2000	F	R25 9		1,252	0,050	2459,31	41,82	227,77	78,85	0,001	5,019	28937,30	1193,73	2040,29	6,59E+06	2,74E+03	3,59	55,5	19,7
IT01	R	2000	F	R29 10)	0,759	0,029	2336,14	33,66	151,85	55,43	-0,104	5,876	22911,51	757,70	2101,63	8,72E+06	1,19E+03	3,59	63,9	13,1
IT02	N/I	2000	F	M1 1		2,669	0,041	2278,84	76,72	331,38	54,75	-0,123	5,193	17652,86	627,68	1456,91	2,80E+07	2,66E+06	3,00	54,7	76,8
IT02		2000	F	M2 2		2,869	0,041	3137,93	78,49	401,72	57,84	-0,123	7,416	28315,61	984,03	1278,20	4,22E+07	1,83E+06	2,80	50,9	83,2
IT02		2000	F	M4 3		1,604	0,067	1948,00	51,53	231,76	57,84	-0,027	4,347	15364,89	472,34	1442,36	3,84E+07	1,50E+06	2,94	71,3	26,7
IT02		2000	F	M9 4		3,922	0,040	5393,31	176,34	452,84	177,57	-0,198	3,979	25826,38	921,13	4410,86	6,10E+07	1,12E+06	2,80	62,8	43,0
IT02		2000	F	M10 5		2,653	0,085	3457,31	74,45	361,96	66,69	0,004	6,520	27289,52	848,15	1792,42	2,31E+07	9,24E+05	2,99	65,4	43,9
IT02		2000	F	M13 6		2,889	0,057	4941,65	107,99	437,13	105,49	-0,021	6,516	36082,95	1140,45	2812,72	3,27E+07	1,56E+06	3,39	64,1	18,0
IT02		2000	F	M15 7		2,780	0,079	4268,64	117,16	376,36	113,62	0,048	9,073	28367,45	1050,94	3295,57	6,66E+07	1,46E+06	2,87	39,5	89,5
IT02		2000	F	M16 8		2,660	0,087	3613,82	130,87	541,65	133,46	0,057	1,488	26066,80	791,94	3066,40	6,62E+07	1,42E+06	3,09	57,7	24,1
IT02		2000	F	M17 9	-	1,658	0,047	3078,35	53,60	324,44	37,14	2,366	9,680	28618,13	836,47	1261,99	3,00E+07	2,42E+06	3,59	62,1	20,8
IT02		2000	F	M19 10	-	1,233	0,025	1611,19	31,24	352,83	22,71	-0,031	5,201	24335,72	624,08	305,92	3,90E+06	3,04E+06	4,34	62,9	14,7
						,	,	,	,	,	,	,	,	,	,	•	•	,	,		
IT03	L	2000	F	L3 1		1,183	0,044	2520,57	12,69	160,20	14,10	0,088	7,916	12747,87	339,87	993,66	1,98E+05	7,93E+02	3,83	72,9	10,3
IT03	L	2000	F	L5 2		1,326	0,049	3625,24	8,39	212,16	24,23	0,035	20,637	16214,11	437,04	1019,07	7,63E+05	8,47E+02	4,02	77,9	7,0
IT03	L	2000	F	L8 3		1,555	0,052	3296,26	12,88	211,75	24,16	0,055	10,870	15485,09	519,49	366,10	1,97E+06	4,43E+03	3,88	61,3	17,4
IT03	L	2000	F	L10 4		1,160	0,049	2474,88	14,35	37,12	14,60	0,250	24,987	10760,81	320,60	212,04	2,60E+05	6,94E+03	5,23	77,9	8,0
IT03	L	2000	F	L12 5		1,231	0,050	3077,63	10,07	115,26	19,48	0,065	14,052	20984,02	642,93	1140,97	1,65E+06	3,30E+03	4,27	73,4	11,8
IT03	L	2000	F	L14 6		1,297	0,043	3561,25	17,83	211,19	25,39	0,006	22,817	17203,58	525,28	818,03	6,96E+05	1,30E+03	4,35	81,4	7,9
IT03		2000	F	L19 7	•	0,941	0,038	2506,44	-25,53	119,28	14,50	0,039	16,751	19288,19	483,08	366,20	9,21E+04	1,26E+03	4,88	76,0	8,1
IT03		2000		L20 8		0,660	0,029	1535,45	5,53	100,20	13,56	0,141	18,604	16098,14	435,62	515,39	3,02E+06	9,42E+02	4,15	81,3	5,2
IT03		2000	F	L22 9		0,955	0,042	2221,26	15,90	150,48	20,97	0,074	9,264	24989,57	800,20	838,73	1,05E+06	4,54E+02	3,72	66,6	15,5
IT03	L	2000	F	L24 10)	0,855	0,045	3032,09	15,13	116,61	14,95	0,022	1,945	14018,21	459,96	610,85	1,18E+06	1,46E+04	3,43	71,8	24,3
IT04				P1 1		3,638	0,068	5683,70	176,03	442,75	94,91	-0,186		28905,13	1224,01	5102,86	1,08E+08	1,00E+06	3,73		12,31
IT04				P2 2		4,770	0,078	7259,39	158,92	521,45	135,82	-0,147		27024,31	862,03	6404,90	1,32E+08	7,21E+05	3,93		12,69
		2000		P4 3		5,032	0,097	6773,99	244,97	524,58	116,99	-0,176	5,639	•	1365,27	6620,94	1,23E+08	2,14E+06	4,65		18,38
IT04			F	P7 4	-	3,117	0,034	6775,07	231,79	461,23	96,06	-0,042	0,634	34357,82	1151,93	5638,30	8,59E+07	1,75E+06	4,48	76,5	9,49
		2000		P10 5		3,044	0,078	6572,58	130,70	385,36	163,20	0,300	2,943		1124,79	4505,34	1,10E+08	4,67E+05	4,07	·	11,47
		2000	F	P15 6		5,331	0,114	4759,88	194,98	590,06	131,82	0,003	6,874		1293,09	7339,00	1,03E+08	7,48E+05	4,22	73,7	16,35
IT04		2000		P17 7		1,940	0,057	4849,18	156,88	415,89	76,16	0,027	-0,255		680,02	4639,07	6,07E+07	3,73E+05	4,09	80,1	7,34
IT04				P18 8	-	2,827	0,071	7596,27	165,48	463,36	134,44	-0,115	6,283	•	1134,52	5024,57	1,10E+08	1,24E+06	4,22	79,9	7,46
IT04				P27 9		4,859	0,109	6680,80	209,33	614,61	184,18	-0,136	17,100		1357,68	6013,71	5,96E+07	1,93E+06	4,29	59,9	1
IT04	٢	2000	F	P28 10	י	2,945	0,074	6258,37	136,77	407,53	134,68	-0,045	0,710	40741,27	1262,69	6202,41	8,73E+07	3,89E+06	3,17	43,1	75,79

							A T. A														
Fläch	_	Jahr	Zeit	Probe = Para	مامال	ATM	ATM- ICP	SIR	DHG	XYL	PROT	NITRIF	N-MIN	PME	PME-ICP	SULF	BAKT	PILZE	PH	TS	os
Flacii		Jaili	Zeit	FIUDE = Fala	allele	ATIVI	ICF	SIK	DIIG	A I L	FROI	INITINIE	IN-IVIIIN	FIVIE	FIVIE-ICF	SULF	DANI	FILZE	ЕП	13	
IT01	R	2000	Н	R2 1	1	1,885	0,047	3200,33	21,19	121,54	12,53	0,346	4,816	19961,63	901,97	336,23	3,12E+06	1,12E+05	2,72	37,3	67,6
IT01	_	2000	 H	R3 2)	1,558	0,047	3088,11	13,41	59,86	12,33	-0,017	10,571	22665,11	976,13	289,97	1,37E+06	4,72E+04	2,72	29,5	80,0
IT01	 	2000	Н	R4 3			0,030	3595,32	29,94	18,36	34,38		6,925	24961,79	893,58	803,43	3,89E+06	5,25E+03	3,09	27,3	91,0
IT01	_	2000	<u>п</u>	R6 4	+	1,849 1,412	•	2398,82	29,94	122,20	21,20	0,451 0,453	4,817	23756,48	981,17	304,95	1,19E+06	1,48E+04	2,55	41,6	83,1
	 				-	•	0,048		•	•	•			•	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				
IT01 IT01		2000 2000	<u>H</u>	R7 5		1,941	0,053	4044,19 3071,97	19,57	192,21	35,91	0,379	7,325	26948,93	1153,07	508,70	1,18E+06	6,27E+04	2,74	37,5	64,6
	1		Н	R8 6		1,398	0,042	•	37,96	118,11	50,92	0,528	7,562	42794,07	1571,73	1417,06	1,13E+06	8,67E+03	2,95	26,8	85,8
IT01	.	2000	<u>H</u>			1,369	0,047	3699,25	14,26	167,28	23,64	0,015	5,670	25378,12	1018,37	263,63	3,20E+06	1,70E+04	2,67	26,0	91,9
IT01	-	2000	H	R24 8		1,371	0,048	2285,23	25,21	158,35	49,71	4,362	2,993	39889,90	1695,16	1298,75	2,66E+06	1,44E+04	2,94	36,1	88,2
IT01	1	2000	H :	R25 9		1,476	0,047	4731,13	36,17	230,22	79,74	0,211	4,460	40870,26	1541,36	2014,04	1,70E+06	7,74E+03	2,94	36,5	60,3
IT01	R	2000	Н	R29 10	0	1,586	0,053	5023,03	57,62	274,65	113,55	0,499	5,982	42334,45	1545,46	3378,65	4,65E+06	2,16E+04	2,71	27,2	90,4
ITOO		0000				4 404	0.055	1050.00	70.47	107.01	40.75	0.000	4.005	00004.00	700.05	4005.00	0.505.07	0.405.00	0.70	47.0	70.0
IT02	_	2000	Η:	M1 1	\	1,491	0,055	4258,96	78,47	407,01	48,75	-0,003	4,805	22281,96	789,35	1005,09	3,59E+07	3,48E+06	2,78	47,6	78,0
IT02	 	2000	<u>H</u>	M2 2	-	2,982	0,112	5377,93	86,92	385,30	58,18	-0,703	11,887	43068,21	1737,93	1071,53	5,30E+07	3,60E+06	2,93	26,8	87,7
IT02	1	2000	H .:	M4 3	+	2,742	0,095	5778,12	94,65	321,90	99,09	-0,404	7,076	28544,43	1249,62	1540,46	1,03E+08	3,04E+06	3,16	59,5	88,1
IT02	_	2000	<u>H</u>	M9 4	-	2,694	0,087	5892,38	162,70	567,28	137,67	-0,186	7,424	28740,68	1170,81	3154,95	9,23E+07	4,96E+06	2,59	40,4	88,0
IT02	 	2000	H	M10 5		1,894	0,072	4039,46	111,76	371,95	74,59	0,017	7,810	26620,17	1125,57	1914,12	4,56E+07	3,87E+06	2,66	49,3	44,6
IT02	_	2000	Н	M13 6		2,475	0,083	5375,77	98,03	330,75	64,43	0,047	13,605	36180,65	1553,07	1976,36	2,32E+07	1,99E+06	2,55	35,4	84,2
IT02	1	2000	Н	M15 7		1,580	0,066	4781,34	151,62	371,27	68,38	-0,032	8,956	29758,44	1202,67	2872,69	5,61E+07	3,74E+06	2,67	29,4	75,9
IT02	_	2000	Н	M16 8	-	2,543	0,085	6561,67	199,41	369,08	75,05	-0,021	1,876	24638,54	1157,17	3060,04	7,89E+07	4,70E+06	2,91	29,0	90,6
IT02	 	2000	Н	M17 9		1,787	0,055	5699,98	68,82	327,99	68,53	15,649	3,216	23931,92	1095,48	1003,56	3,28E+07	2,52E+06	2,77	37,4	91,2
IT02	М	2000	Н	M19 10	0	1,407	0,053	2656,56	1,10	140,71	25,29	-0,060	3,528	22562,04	1106,24	152,61	1,13E+07	1,93E+06	2,86	26,8	91,2
IT03	1	2000	Н	L3 1		1,580	0,043	2436,02	16,27	81,31	16,73	0,107	18,309	13934,15	423,19	524,67	2,05E+06	2,15E+04	4,58	84,0	3,2
IT03		2000	Н	L5 2		1,685	0,047	3380,10	24,59	234,86	38,16	0,033	31,534	18917,40	553,13	725,63	4,00E+06	4,25E+03	4,77	87,3	2,7
IT03		2000	Н	L8 3		2,126	0,033	2984,47	10,72	201,39	23,97	0,481	28,971	18081,06	702,20	162,53	7,25E+05	1,83E+05	5,02	84,2	3,0
IT03	 	2000	Н	L10 4	1	1,196	0,046	2440,87	1,63	218,91	19,17	0,002	9,834	15541,15	518,16	243,02	1,29E+06	5,06E+04	5,07	88,0	4,1
IT03	 	2000	Н	L12 5	5	1,134	0,044	2612,56	5,00	135,25	29,31	0,138	5,626	26621,22	857,59	1154,73	4,78E+06	4,55E+03	5,24	80,3	8,8
IT03	1	2000	Н	L14 6	3	1,378	0,045	2788,33	13,96	145,01	23,29	0,055	29,085	20404,51	681,07	596,34	1,38E+06	1,01E+04	4,87	82,3	3,9
IT03		2000	Н	L19 7	7	1,512	0,047	2245,66	8,78	185,13	25,57	0,113	6,280	29223,20	938,74	940,64	9,41E+05	8,96E+03	4,16	82,4	5,2
IT03				L20 8	3	0,949	0,035	2186,36	-1,98	174,81	26,68	0,076	11,135	14393,35	579,44	516,86	9,90E+06	1,52E+04	5,25		3,9
IT03		2000)	1,247	0,039	2436,65	-36,30	128,19	23,26	0,039	23,471	15835,91	574,39	547,81	8,21E+05	1,76E+04	5,02	77,4	6,5
IT03	L	2000	Н	L24 10	0	1,440	0,050	3250,38	5,97	246,16	33,21	0,152	24,224	24706,77	770,65	629,46	1,15E+06	4,09E+03	4,63	83,0	4,0
IT04	Р	2000	Н	P1 1		1,925	0,080	6585,45	207,86	448,68	142,08	-0,555	-3,655	28196,75	1249,83	5349,45	7,46E+07	2,28E+06	4,87	81,1	5,95
IT04	Р	2000	Η	P2 2	2	3,300	0,081	7500,14	316,83	601,25	144,00	5,896	-2,829	26980,24	1310,67	5033,60	1,14E+08	8,28E+06	4,87	84	3,88
IT04	Р	2000	Н	P4 3	3	2,306	0,070	6813,10	289,87	327,45	136,09	-0,389	-2,499	23042,22	1341,28	7330,27	9,00E+07	3,22E+06	5,59	81,4	5,73
IT04	Р	2000	Н	P7 4	1	2,092	0,060	6330,62	255,96	223,62	89,37	-0,156	-0,791	32205,38	1491,98	5305,37	4,95E+07	4,05E+06	4,89	83	5,35
IT04	Р	2000	Н	P10 5	5	2,384	0,078	5093,66	121,12	468,34	118,18	0,505	1,550	34263,85	1504,35	2204,05	9,84E+07	2,84E+06	4,67	81,9	13,77
IT04	Р	2000	Н	P15 6	3	1,250	0,083	6247,81	180,35	403,55	96,24	-0,430	-0,564	30290,76	1229,43	5300,60	8,18E+07	6,90E+06	4,43	85,8	4,56
IT04	Р	2000	Н	P17 7	7	1,649	0,058	4339,60	154,31	523,11	82,91	-2,932	4,101	27705,54	953,09	2865,14	2,31E+07	2,66E+06	4,23	81,4	6,92
IT04	Р	2000	Н	P18 8	3	1,419	0,059	6277,67	230,60	251,23	102,86	-0,292	-3,770	24536,67	1258,50	6437,66	6,70E+07	7,82E+06	5,14	83,7	5,35
IT04	Р	2000	Н	P27 9)	2,198	0,081	8354,23	220,49	432,62	100,70	1,643	3,842	30565,94	1199,98	5415,61	6,66E+07	7,55E+06	4,43	83,1	6,69
IT04	Р	2000	Н	P28 10	0	2,203	0,063	7534,92	177,88	435,13	115,93	-2,361	-2,111	34490,92	1302,84	4599,87	7,59E+07	1,11E+07	4,5	85,2	4,95
		_																			